摘要:
Microelectronic imager assemblies comprising a workpiece including a substrate and a plurality of imaging dies on and/or in the substrate. The substrate includes a front side and a back side, and the imaging dies comprise imaging sensors at the front side of the substrate and external contacts operatively coupled to the image sensors. The microelectronic imager assembly further comprises optics supports superimposed relative to the imaging dies. The optics supports can be directly on the substrate or on a cover over the substrate. Individual optics supports can have (a) an opening aligned with one of the image sensors, and (b) a bearing element at a reference distance from the image sensor. The microelectronic imager assembly can further include optical devices mounted or otherwise carried by the optics supports.
摘要:
A semiconductor package such as an image sensor package, and methods for fabrication. A frame structure includes an array of frames, each having an aperture therethrough, into which an image sensor die in combination with a cover glass, filter, lens or other components may be installed in precise mutual alignment. Singulated image sensor dice and other components may be picked and placed into each frame of the frame structure. Alternatively, the frame structure may be configured to be aligned with and joined to a wafer bearing a plurality of image sensor dice, wherein optional, downwardly protruding skirts along peripheries of the frames may be received into kerfs cut along streets between die locations on the wafer, followed by installation of other package components. In either instance, the frame structure in combination with singulated image sensor dice or a joined wafer is singulated into individual image sensor packages. Various external connection approaches may be used for the packages.
摘要:
Methods for forming through vias in a semiconductor substrate and resulting structures are disclosed. In one embodiment, a through via may be formed by forming a partial via from the active surface through a conductive element thereon and a portion of the semiconductor substrate underlying the conductive element. The through via may then be completed by laser ablation or drilling from the back surface. In another embodiment, a partial via may be formed by laser ablation or drilling from the back surface of a semiconductor substrate to a predetermined distance therein. The through via may be completed from the active surface by forming a partial via extending through the conductive element and the underlying semiconductor substrate to intersect the laser-drilled partial via. In another embodiment, a partial via may first be formed by ablation or drilling from the back surface of the semiconductor substrate followed by dry etching to complete the through via and expose the underside of the conductive element.
摘要:
Microelectronic imager assemblies comprising a workpiece including a substrate and a plurality of imaging dies on and/or in the substrate. The substrate includes a front side and a back side, and the imaging dies comprise imaging sensors at the front side of the substrate and external contacts operatively coupled to the image sensors. The microelectronic imager assembly further comprises optics supports superimposed relative to the imaging dies. The optics supports can be directly on the substrate or on a cover over the substrate. Individual optics supports can have (a) an opening aligned with one of the image sensors, and (b) a bearing element at a reference distance from the image sensor. The microelectronic imager assembly can further include optical devices mounted or otherwise carried by the optics supports.
摘要:
A probe card for testing semiconductor wafers, and a method and system for testing wafers using the probe card are provided. The probe card is configured for use with a conventional testing apparatus, such as a wafer probe handler, in electrical communication with test circuitry. The probe card includes an interconnect substrate having contact members for establishing electrical communication with contact locations on the wafer. The probe card also includes a membrane for physically and electrically connecting the interconnect substrate to the testing apparatus, and a compressible member for cushioning the pressure exerted on the interconnect substrate by the testing apparatus. The interconnect substrate can be formed of silicon with raised contact members having penetrating projections. Alternately the contact members can be formed as indentations for testing bumped wafers. The membrane can be similar to multi layered TAB tape including metal foil conductors attached to a flexible, electrically-insulating, elastomeric tape. The probe card can be configured to contact all of the dice on the wafer at the same time, so that test signals can be electronically applied to selected dice as required.
摘要:
An interposer including a fence that receives and aligns a semiconductor device, such as a flip-chip type semiconductor device, with a substrate. The fence may include edges that are configured to progressively align a semiconductor device with the substrate. The fence may also include one or more laterally recessed regions to facilitate rough alignment of a semiconductor device with the substrate. Methods for fabricating the fence include the use of stereolithographic and molding processes. When stereolithography is used to fabricate the fence, a machine vision system that includes at least one camera operably associated with a computer may be used to control a stereolithography apparatus and facilitates recognition of the position and orientation of substrates on and around which material is to be applied in one or more layers to form the fence. As a result, the substrates need not be precisely mechanically aligned.
摘要:
A low alpha emissivity-induced error solder bump, flip-chip integrated circuit device. The device includes a semiconductor die having an active surface and a bond pad array disposed about the active surface of the die. The active surface of the die includes logic circuits adjacent memory cell arrays. Each of the bond pads directly overlays a logic circuit, to which they may be connected. The present invention also includes methods for designing and fabricating the invented devices and connecting them to a carrier substrate.
摘要:
A temporary package for a semiconductor die is provided. The temporary package has an outline and external contact configuration that are the same as a conventional plastic or ceramic semiconductor package. The temporary package can be used for burn-in testing of the die using standard equipment. The die can then be removed from the package and certified as a known good die. The package includes a base, an interconnect and a force applying mechanism. The package base includes external contacts formed in a dense array, such as a land grid array (LGA), a pin grid array (PGA), a bumped grid array (BGA) or a perimeter array. The package base can be formed of ceramic or plastic with internal conductive lines using a ceramic lamination process, a 3-D molding process or a Cerdip formation process.
摘要:
A semiconductor carrier and system for testing bumped semiconductor components, such as dice and packages, having contact bumps are provided. The carrier includes a base, an interconnect, and a force applying mechanism. The interconnect includes patterns of contact members adapted to electrically contact the contact bumps. The interconnect can include a substrate having contact members formed as recesses, or as projections, covered with conductive layers. Alternately, the interconnect can be a multi layered tape bonded directly to a base of the carrier. In addition to providing electrical connections, the contact members perform an alignment function by self centering the contact bumps within the contact members. The carrier can also include an alignment member configured to align the components with the interconnect. The system can include the carrier, a socket, and a testing apparatus such as a burn-in board in electrical communication with test circuitry.
摘要:
A fully hermetically sealed semiconductor chip and its method of manufacture. The semiconductor chip of the present invention is fully hermetically sealed on both sides and the edges thereof through the use of suitable coatings applied thereto, such as glass, to prevent an environmental attack of the semiconductor chip. The fully hermetically sealed semiconductor chip of the present invention does not require the use of a separate package for the hermetic sealing of the chip, thereby reducing the size of such a chip. The method of the manufacture of the semiconductor chip of the present invention provides a simple process the fully hermetic sealing of both sides and the edges of the semiconductor chip out the use of a separate package.