摘要:
A semiconductor device has a first substrate and first conductive pillars formed over the first substrate. Second conductive pillars are formed over the first substrate alternating with the first conductive pillars. The second conductive pillars are vertically offset with respect to the first conductive pillars. First BOT interconnect sites are formed over a second substrate. Second BOT interconnect sites are formed over the second substrate alternating with the first interconnect sites. The second interconnect sites are vertically offset with respect to the first interconnect sites. The first substrate is mounted to the second substrate such that the first conductive pillars are aligned with and electrically connected to the first interconnect sites and the second conductive pillars are aligned with and electrically connected to the second interconnect sites. An underfill material is deposited between the first and second substrates. The first substrate can be a flipchip type semiconductor device.
摘要:
A method for manufacturing a semiconductor device includes: a) preparing a structure including a semiconductor substrate, an electrode provided on a first surface of the semiconductor substrate, and an insulation film provided on the first surface and having an opening positioned on a first part of the electrode; b) forming a first metal layer from an upper surface of the first part of the electrode to an upper surface of the insulation film; c) forming a resin layer on a first part of the first metal layer, which is positioned on the first part of the electrode, and on the insulation film after the step b); d) removing at least a second part of the resin layer, which is positioned on the first part of the first metal layer, in a manner to leave a first part of the resin layer so as to form a resin protrusion; and e) forming a second metal layer, which is electrically connected with the electrode, from an upper surface of the first metal layer to an upper surface of the resin protrusion.
摘要:
An electronic component forming apparatus for forming an electronic component by radiating light to a photosensitive conductive resin provided on a forming work material, comprising radiation device for radiating light to the forming work material, detection device for detecting reflecting light reflected from the forming work material, and control device for controlling the radiating light responsive to an amount of the light detected by the detection device.
摘要:
A semiconductor device has a first substrate and first conductive pillars formed over the first substrate. Second conductive pillars are formed over the first substrate alternating with the first conductive pillars. The second conductive pillars are vertically offset with respect to the first conductive pillars. First BOT interconnect sites are formed over a second substrate. Second BOT interconnect sites are formed over the second substrate alternating with the first interconnect sites. The second interconnect sites are vertically offset with respect to the first interconnect sites. The first substrate is mounted to the second substrate such that the first conductive pillars are aligned with and electrically connected to the first interconnect sites and the second conductive pillars are aligned with and electrically connected to the second interconnect sites. An underfill material is deposited between the first and second substrates. The first substrate can be a flipchip type semiconductor device.
摘要:
A semiconductor device has a first substrate and first conductive pillars formed over the first substrate. Second conductive pillars are formed over the first substrate alternating with the first conductive pillars. The second conductive pillars are vertically offset with respect to the first conductive pillars. First BOT interconnect sites are formed over a second substrate. Second BOT interconnect sites are formed over the second substrate alternating with the first interconnect sites. The second interconnect sites are vertically offset with respect to the first interconnect sites. The first substrate is mounted to the second substrate such that the first conductive pillars are aligned with and electrically connected to the first interconnect sites and the second conductive pillars are aligned with and electrically connected to the second interconnect sites. An underfill material is deposited between the first and second substrates. The first substrate can be a flipchip type semiconductor device.
摘要:
A method for manufacturing a semiconductor device includes: a) preparing a structure including a semiconductor substrate, an electrode provided on a first surface of the semiconductor substrate, and an insulation film provided on the first surface and having an opening positioned on a first part of the electrode; b) forming a first metal layer from an upper surface of the first part of the electrode to an upper surface of the insulation film; c) forming a resin layer on a first part of the first metal layer, which is positioned on the first part of the electrode, and on the insulation film after the step b); d) removing at least a second part of the resin layer, which is positioned on the first part of the first metal layer, in a manner to leave a first part of the resin layer so as to form a resin protrusion; and e) forming a second metal layer, which is electrically connected with the electrode, from an upper surface of the first metal layer to an upper surface of the resin protrusion.
摘要:
A semiconductor device has a first substrate and first conductive pillars formed over the first substrate. Second conductive pillars are formed over the first substrate alternating with the first conductive pillars. The second conductive pillars are vertically offset with respect to the first conductive pillars. First BOT interconnect sites are formed over a second substrate. Second BOT interconnect sites are formed over the second substrate alternating with the first interconnect sites. The second interconnect sites are vertically offset with respect to the first interconnect sites. The first substrate is mounted to the second substrate such that the first conductive pillars are aligned with and electrically connected to the first interconnect sites and the second conductive pillars are aligned with and electrically connected to the second interconnect sites. An underfill material is deposited between the first and second substrates. The first substrate can be a flipchip type semiconductor device.
摘要:
Provided are methods for forming an electrically conductive structure of a desired three-dimensional shape on a substantially planar surface of a substrate, e.g., a semiconductor wafer. Typically, the particulate matter is deposited in a layer-by-layer manner and adhered to selected regions on the substrate surface. The particulate matter may be deposited to produce a mold for forming the structure and/or to produce the structure itself. A three-dimensional printer with associated electronic data may be used without the need of a lithographic mask or reticle.
摘要:
The present invention provides a bonding method in which a bonded portion having a sufficient bonding strength can be obtained at a relatively low temperature, for example, in die bonding a semiconductor chip. A metal paste 20 was applied to a semiconductor chip 10, the metal paste 20 consisting of metal powder of one or more kinds selected from gold powder, silver powder, platinum powder, and palladium powder having a purity not lower than 99.9 wt % and an average particle diameter of 0.005 μm to 1.0 μm and an organic solvent. After being applied, the metal paste 20 was dried in a vacuum in a dryer. The chip was heated at 230° C. for 30 minutes to sinter the metal paste, by which a metal powder sintered compact 21 was formed. Next, a nickel plate 30 was placed on the semiconductor chip 10, and bonded to the semiconductor chip 10 by heating and pressurization.
摘要:
A method for manufacturing a semiconductor includes: a Step A of preparing a chip with sheet-shaped resin composition in which a sheet-shaped resin composition is pasted onto a semiconductor chip, a Step B of preparing an adherend, a Step C of pasting the chip with sheet-shaped resin composition onto the adherend so that the sheet-shaped resin composition serves as a pasting surface, a Step D of heating the sheet-shaped resin composition to semi-cure the sheet-shaped resin composition after the Step C, and a Step E of heating the sheet-shaped resin composition at a higher temperature than in the Step D to cure the sheet-shaped resin composition after the Step D.