Abstract:
A conductive bump assembly may include a passive substrate. The conductive bump assembly may also include a conductive bump pad supported by the passive substrate and surrounded by a first passivation layer opening. The conductive bump assembly may further include a second passivation layer opening on the passive substrate. The second passivation layer opening may be merged with the first passivation layer opening surrounding the conductive bump pad proximate an edge of the passive substrate. The conductive bump assembly may also include a conductive bump on the conductive bump pad.
Abstract:
In some embodiments, to increase the height-to-pitch ratio of a solder connection that connects different structures with one or more solder balls, only a portion of a solder ball's surface is melted when the connection is formed on one structure and/or when the connection is being attached to another structure. In some embodiments, non-solder balls are joined by an intermediate solder ball (140i). A solder connection may be surrounded by a solder locking layer (1210) and may be recessed in a hole (1230) in that layer. Other features are also provided.
Abstract:
Systems and methods are provided for stacked semiconductor memory packages. Each package can include an integrated circuit ("IC") package substrate capable of transmitting data to memory dies stacked within the package over two channels. Each channel can be located on one side of the IC package substrate, and signals from each channel can be routed to the memory dies from their respective sides.
Abstract:
In some forms, an electronic assembly includes a substrate; and a ball pad mounted on the substrate, wherein the ball pad includes a plurality of lobes projecting distally from a center of the ball pad. In some forms, he electronic assembly includes a substrate; and a ball pad mounted on the substrate, wherein the ball pad includes a lobe projecting distally from a center of the ball pad. In some forms, the electronic assembly includes a substrate; and a ball pad mounted on the substrate, wherein the ball pad includes at least one lobe projecting distally from a center of the ball pad; and an electronic package that includes at least one conductor that electrically connects the ball pad on the substrate to the electronic package.
Abstract:
In some embodiments, to increase the height-to-pitch ratio of a solder connection that connects different structures with one or more solder balls, only a portion (510) of a solder ball's (140) surface is melted when the connection is formed on one structure (110) and/or when the connection is being attached to another structure (HOB). The structure (110) may be an integrated circuit, an interposer, a rigid or flexible wiring substrate, a printed circuit board, some other packaging substrate, or an integrated circuit package. In some embodiments, solder balls (140.1, 140.2) are joined by an intermediate solder ball (140i), upon melting of the latter only. Any of the solder balls (140, 140i) may have a non-solder central core (140C) coated by solder shell (140S). Some of the molten or softened solder may be squeezed out, to form a "squeeze-out" region (520, 520A, 520B, 520.1, 520.2). In some embodiments, a solder connection (210) such as discussed above, on a structure (110A), may be surrounded by a dielectric layer (1210), and may be recessed in a hole (1230) in that layer (1210), to help in aligning a post (1240) of a structure (HOB) with the connection (210) during attachment of the structures (110A, HOB). The dielectric layer (1210) may be formed by moulding. The dielectric layer may comprise a number of layers (1210.1, 1210.2), "shaved" (partially removed) to expose the solder connection (210). Alternatively, the recessed solder connections (210) may be formed using a sublimating or vapourisable material (1250), placed on top of the solder (210) before formation of the dielectric layer (1210) or coating solder balls (140); in the latter case, the solder (140C) sinks within the dielectric material (1210) upon removal of the material (1250) and subsequent reflow. The solder connections (210.1, 210.2) may be used for bonding one or more structures (HOB, HOC) (e.g. an integrated circuit die or wafer, a packaging substrate or a package) to a structure (110A) (a wiring substrate) on which a die (HOB) is flip-chip connected. The solder connections (210.1, 210.2) may differ from each other, in particular in height.