Abstract:
A device comprises a surface mount component on a substrate, in which the surface mount component is attached by a set of discrete mechanical coupling parts and by a bonding layer. This enables the mechanical coupling properties and the electrical/thermal properties to be optimized separately.
Abstract:
The semiconductor device comprises a semiconductor substrate (10) with a metallization (111) having an upper terminal layer (22) located at a front side (20) of the substrate. The metallization forms a through-substrate via (23) from the upper terminal layer to a rear terminal layer (13) located opposite to the front side at a rear side (21) of the substrate. The through-substrate via comprises a void (101), which may be filled with air or another gas. A solder ball (100) closes the void without completely filling it. A variety of interconnections for three dimensional integration is offered by this scheme.
Abstract:
A method of fabricating a flip chip electrical coupling, a flip chip electrical coupling, and a device comprising a flip chip electrical coupling, according to the invention, provide a reciprocal bump and contact-pad arrangement in the flip chip element wherein the bumps are formed from a layer of bump material by subtractive process. Such flip chip elements are highly suitable for use in many devices but are particularly applicable to the field of ultrasound imaging where they may be included to couple and connect the acoustic transducer stack to an ASIC.
Abstract:
The invention relates to a method of manufacturing a matrix of electronic components (111), comprising a step of producing an active layer (101) on a substrate (100), and a step of individualizing components by forming trenches (102) in the active layer (101) at least until the substrate (100) emerges. The method comprises the steps of: depositing a layer of functional material (102) on the active layer (101); depositing a photosensitive resin (104) on the layer of material (103) in such a way as to fill said trenches (102) and to form a thin film (115) on the upper face of the components (111); at least partially exposing the resin (104) to radiation while under-exposing the portion of resin of the trenches; developing the resin (104) so as to remove the properly exposed portion thereof; removing the portion of layer of functional material (103) that shows through after the development step; and removing the remaining portion of resin.
Abstract:
L'invent ion concerne un procédé de fabrication d'une matrice de composants électroniques (111), comportant une étape de réalisation d'une couche active (101) sur un substrat (100), et une étape d'individualisation des composants par formation de tranchées (102) dans la couche active (101) au moins jusqu'à dégager le substrat (100). Le procédé comporte des étapes consistant à : à déposer une couche de matériau fonctionnel (103) sur la couche active (101); déposer une résine photosensible (104) sur la couche de matériau (103) de manière à remplir lesdites tranchées (102) et à former une pellicule mince (115) sur la face supérieure des composants (111); exposer au moins partiellement la résine (104) à un rayonnement tout en sous- exposant la portion de résine des tranchées; développer la résine (104) de manière à éliminer la portion de celle-ci correctement exposée; éliminer la portion de couche de matériau fonctionnel (103) affleurante à la suite de l'étape de développement; et éliminer la portion de résine restante.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Anordnung eines Flip-Chips (3) auf einem Substrat (2), bei dem eine relativ zu dem Flip-Chip (3) mittige mechanische Fixierung (6) des Flip-Chips (3) auf dem Substrat (2) unter gleichzeitiger Generierung eines die mechanische Fixierung (6) umgebenden Spalts (7) zwischen dem Flip-Chip (3) und dem Substrat (2) vorgenommen wird. Ferner betrifft die Erfindung eine entsprechende Anordnung, ein Computerprogramm und ein Computerprogrammprodukt.
Abstract:
A microelectronic package includes a microelectronic element (80) having faces and contacts (83) and a flexible substrate (90) spaced from and overlying a first face (84) of the microelectronic element (82). The package (80) also includes a plurality of conductive posts (98) extending from the flexible substrate (90) and projecting away from the first face (84) of the microelectronic element (82), wherein at least some of the conductive posts (98) are electrically interconnected with the microelectronic element (82), and a plurality of support elements (88) supporting the flexible substrate (90) over the microelectronic element (82). The conductive posts (98) are offset from the support elements (82) to facilitate flexure of the substrate (90) and movement of the posts (98) relative to the microelectronic element (82).
Abstract:
A chip mounting apparatus comprises an adhesive applying unit (11), a temporary pressure-bonding unit (12) and a permanent pressure-bonding unit (13). The unit (11) uses a camera (21) to detect a substrate mark of each section area of a film substrate (1) and a substrate mark of each substrate pattern in each section area. The detection results are transmitted to the unit (12). The unit (12) detects the substrate mark with a camera (45) and pressure-bonds a chip temporarily by recognizing the position of each substrate pattern on the basis of the detection results and the location data on each substrate pattern transmitted from the unit (11). Even if the film substrate (1) expands or contracts, therefore, the chip can be highly accurately mounted. Moreover, the unit (12) does not detect the substrate mark, so that the reduction in the process efficiency can be minimized.