Abstract:
A solar recharge station is described having a contact area, a battery bank charge area and a solar panel array for maintaining the battery bank charged. The contact area includes electric contacts formed for engagement automatically by contacts on an electric powered vehicle as the vehicle enters the contact area. The battery bank is connected so that its energy is available for either recharging the vehicle or other use, and in case the vehicle needs a recharge but the battery banks lacks sufficient charge, ordinary house voltage is used.
Abstract:
The present invention is an apparatus and method for maximizing light beam utilization in patterning applications by positioning a plurality of mask mirrors in the light beam path to form patterned light onto a plurality of work pieces. Each mask mirror is designed so that a portion of the light beam area needed for exposing a work piece to patterned light is reflected from the mask mirror, while the remainder is passed through the mask mirror to another mask mirror. Alternatively, each mask mirror can be designed so that a portion of the light beam area needed for exposing a work piece to patterned light is passed through the mask mirror, while the remainder is reflected to another mask mirror.
Abstract:
An electrical structure, and associated method of fabrication, for reducing thermally induced strain in a structure that couples a first conductive body of a first substrate to a second conductive body of a second substrate (e.g., a chip to a chip carrier; a chip carrier to a circuit card). The melting point of the first conductive body exceeds the melting point of the second conductive body. The second conductive body may include eutectic lead-tin alloy, while the first conductive body may include non-eutectic lead-tin alloy. A portion of the first conductive body is coated with, or volumetrically surrounded by, a material that is nonsolderable and nonconductive. The first and second conductive bodies are coupled mechanically and electrically by surface adhesion at an uncoated portion of the first conductive body, by application of a temperature that lies between the melting points of the first and second conductive bodies.
Abstract:
A method and structure for conductively coupling a metallic stiffener to a chip carrier. A substrate has a conductive pad on its surface and an adhesive layer is formed on the substrate surface. The metallic stiffener is placed on the adhesive layer, wherein the adhesive layer mechanically couples the stiffener to the substrate surface and electrically couples the stiffener to the pad. The adhesive layer is then cured such as by pressurization at elevated temperature. Embodiments of the present invention form the adhesive layer by forming an electrically conductive contact on the pad and setting a dry adhesive on the substrate, such that the electrically conductive contact is within a hole in the dry adhesive. The electrically conductive contact electrically couples the stiffener to the pad. The curing step includes curing both the dry adhesive and the electrically conductive contact, resulting in the dry adhesive adhesively coupling the stiffener to the substrate. The electrically conductive contact may include an electrically conductive adhesive or a metallic solder. Additional embodiments of the present invention form the adhesive layer by applying an electrically conductive adhesive on the substrate, wherein after the stiffener is placed on the adhesive layer, the electrically conductive adhesive mechanically and electrically couples the stiffener to the surface of the substrate.
Abstract:
A method for aligning a plurality of thin film transistor tiles for constructing a flat panel display. A coverplate is arranged on a coverplate support. A first layer of a bonding material is applied to at least one of a first side of each of the tiles and a surface of the coverplate on which the tiles are to be secured. The tiles are arranged on the coverplate, such that the first layer of bonding material is arranged between the tiles and the coverplate. The tiles are connected to an alignment apparatus. The tiles are aligned relative to each other and the coverplate. The tiles are at least partially secured to the coverplate.
Abstract:
A method of making an electrically conductive contact on a substrate by applying a layer of solder paste to a circuitized feature on a substrate and selectively heating and melting the solder paste over the feature to form a solder bump. The excess solder paste is removed. A focused energy heat source such as a laser beam or focused Infrared heats the solder paste. In another embodiment, a reflective mask with apertures may be used to allow focused heating source to selectively melt areas of the solder paste layer applied to a circuitized feature. In yet another embodiment, a reflective mask with apertures filled with solder paste is applied onto a substrate and then heated to cause localized solder melting. The mask and excess solder paste are removed.
Abstract:
A screen printing fixture holds a flexible circuit board having components attached to one side, to allow screening a pattern of solder paste onto the second side for subsequent attachment of components to that side. In an electronic package assembly a flexible circuit board with components is wound about a heat spreader assembly having a cavity so that at least one component on the flexible circuit board is positioned within the cavity and in thermal connection to the heat spreader.
Abstract:
A stiffener (34 or 52 or 72) includes a pathway which allows gases and fluids, such as air, to be vented from the interface between surface bonding regions (35 or 60 or 74) of the stiffener and an adhesive (38 or 56 or 80) on a flexible substrate (36 or 54 or 78). The pathway may take the form of a porous material used for the stiffener or one or more bore holes (58 or 59 or 70) formed in the stiffener. The stiffener may also include an internal cavity (76) for promoting venting of fluids and gases. By venting fluid and gases from the adhesive/stiffener interface, better adhesion between the stiffener and flexible substrate is achieved.
Abstract:
A method for producing interconnect structures and circuit boards including placing an area array component having connection bumps on the corresponding metal contacts on a substrate disposed on a backing plate, providing heat curable joining material in communication with the bumps and contacts, contacting a gas nozzle directly to a portion of the substrate surrounding the component to press the substrate between the nozzle and the backing plate to restrain the substrate from wrapping, heating the component, the joining material and the substrate proximate the metal contacts while maintaining the nozzle on the substrate to cure the joining material, and cooling the component, the joining material and the substrate. Selected components can also be replaced utilizing the gas nozzle for restraining the substrate from wrapping.
Abstract:
A dispensing device for small parts arranged in a compact shape from when the parts can be withdrawn from a single point including a plurality of vertically stacked trays slidably disposed upon banks of spaced flanges which are rotatable about a central axis of the device and reciprocable in a plane parallel to the central axis. The uppermost and lowermost trays in the stack are free to rotate with the flanges and the balance of the trays are restrained from rotation so as to be disengaged from one bank of flanges and received between the planes of another bank of flanges.