Abstract:
An IC chip package, in one embodiment, may include an IC chip including an upper surface including an overhang extending beyond a sidewall of the IC chip, and underfill material about the sidewall and under the overhang. The overhang prevents underfill material from extending over an upper surface of the IC chip. In another embodiment, a ball grid array (BGA) is first mounted to landing pads on a lower of two joined IC chip packages. Since the BGA is formed on the lower IC chip package first, the BGA acts as a dam for the underfill material thereon. The underfill material extends about the respective IC chip and surrounds a bottom portion of a plurality of solder elements of the BGA and at least a portion of respective landing pads thereof.
Abstract:
Structure and methods of making the structures. The structures include a structure, comprising: an organic dielectric passivation layer extending over a substrate; an electrically conductive current spreading pad on a top surface of the organic dielectric passivation layer; an electrically conductive solder bump pad comprising one or more layers on a top surface of the current spreading pad; and an electrically conductive solder bump containing tin, the solder bump on a top surface of the solder bump pad, the current spreading pad comprising one or more layers, at least one of the one or more layers consisting of a material that will not form an intermetallic with tin or at least one of the one or more layers is a material that is a diffusion barrier to tin and adjacent to the solder bump pad.
Abstract:
A method of forming a semiconductor structure includes forming a resistor on an insulator layer over a substrate, and forming at least one dielectric layer over the resistor. The method also includes forming a substrate contact through the at least one dielectric layer, through the resistor, through the insulator layer, and into the substrate. The substrate contact comprises a high thermal conductivity material.
Abstract:
Semiconductor structures, methods of manufacture and design structures are provided. The structure includes at least one offset crescent shaped solder via formed in contact with an underlying metal pad of a chip. The at least one offset crescent shaped via is offset with respect to at least one of the underlying metal pad and an underlying metal layer in direct electrical contact with an interconnect of the chip which is in electrical contact with the underlying metal layer.
Abstract:
An array of radiation sensors or detectors is integrated within a three-dimensional semiconductor IC. The sensor array is located relatively close to the device layer of a circuit (e.g., a microprocessor) to be protected from the adverse effects of the ionizing radiation particles. As such, the location where the radiation particles intersect the device layer can be calculated with coarse precision (e.g., to within 10 s of microns).
Abstract:
Underfill flow guide structures and methods of using the same are provided with a module. In particular the underfill flow guide structures are integrated with a substrate and are configured to prevent air entrapment from occurring during capillary underfill processes.
Abstract:
In one embodiment, a collar structure includes a non-conductive layer that relieves stress around the perimeter of each of the solder balls that connect the semiconductor die to the semiconductor chip package substrate, and another non-conductive layer placed underneath to passivate the entire surface of the die.
Abstract:
An array of radiation sensors or detectors is integrated within a three-dimensional semiconductor IC. The sensor array is located relatively close to the device layer of a circuit (e.g., a microprocessor) to be protected from the adverse effects of the ionizing radiation particles. As such, the location where the radiation particles intersect the device layer can be calculated with coarse precision (e.g., to within 10 s of microns).
Abstract:
A vertical metallic stack, from bottom to top, of an elemental metal liner, a metal nitride liner, a Ti liner, an aluminum portion, and a metal nitride cap, is formed on an underlying metal interconnect structure. The vertical metallic stack is annealed at an elevated temperature to induce formation of a TiAl3 liner by reaction of the Ti liner with the material of the aluminum portion. The material of the TiAl3 liner is resistant to electromigration, thereby providing enhanced electromigration resistance to the vertical metallic stack comprising the elemental metal liner, the metal nitride liner, the TiAl3 liner, the aluminum portion, and the metal nitride cap. The effect of enhanced electromigration resistance may be more prominent in areas in which the metal nitride cap suffers from erosion during processing.
Abstract translation:在下面的金属互连结构上形成由元素金属衬垫,金属氮化物衬垫,Ti衬垫,铝部分和金属氮化物盖的从底部到顶部的垂直金属堆叠。 垂直金属叠层在升高的温度下退火,以通过Ti衬垫与铝部分的材料反应而引起TiAl 3衬层的形成。 TiAl 3衬垫的材料对电迁移是耐受的,从而对包括元素金属衬垫,金属氮化物衬垫,TiAl 3衬里,铝部分和金属氮化物盖的垂直金属堆叠提供增强的电迁移阻力。 在金属氮化物盖在加工过程中遭受侵蚀的区域中,增强的耐电迁移性的作用可能更为突出。
Abstract:
A vertical metallic stack, from bottom to top, of an elemental metal liner, a metal nitride liner, a Ti liner, an aluminum portion, and a metal nitride cap, is formed on an underlying metal interconnect structure. The vertical metallic stack is annealed at an elevated temperature to induce formation of a TiAl3 liner by reaction of the Ti liner with the material of the aluminum portion. The material of the TiAl3 liner is resistant to electromigration, thereby providing enhanced electromigration resistance to the vertical metallic stack comprising the elemental metal liner, the metal nitride liner, the TiAl3 liner, the aluminum portion, and the metal nitride cap. The effect of enhanced electromigration resistance may be more prominent in areas in which the metal nitride cap suffers from erosion during processing.
Abstract translation:在下面的金属互连结构上形成由元素金属衬垫,金属氮化物衬垫,Ti衬垫,铝部分和金属氮化物盖的从底部到顶部的垂直金属堆叠。 垂直金属叠层在升高的温度下退火,以通过Ti衬垫与铝部分的材料反应而引起TiAl 3衬层的形成。 TiAl 3衬垫的材料对电迁移是耐受的,从而对包括元素金属衬垫,金属氮化物衬垫,TiAl 3衬里,铝部分和金属氮化物盖的垂直金属堆叠提供增强的电迁移阻力。 在金属氮化物盖在加工过程中遭受侵蚀的区域中,增强的耐电迁移性的作用可能更为突出。