Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
The use of microfluidic structures enables high throughput screening of protein crystallization. In one embodiment, an integrated combinatoric mixing chip allows for precise metering of reagents to rapidly create a large number of potential crystallization conditions, with possible crystal formations observed on chip. In an alternative embodiment, the microfluidic structures may be utilized to explore phase space conditions of a particular protein crystallizing agent combination, thereby identifying promising conditions and allowing for subsequent focused attempts to obtain crystal growth.
Abstract:
A fluid dispensing system for at least biological applications, e.g., oligonucleotides, peptide nucleic acids (nullPNAnull), proteins, polysaccharides, polypeptides, inorganic solutions, microelectromechanical systems (MEMS), optical sensors, and other applications. The dispensing system includes a fluid dispensing apparatus for applying selected fluids in a predetermined manner to form a plurality of spots based upon one or more of the selected fluids on a surface of a substrate. The apparatus comprises an elongated member having at least a tip portion, which extends from the elongated member. The apparatus also has an etched trench extending along a portion of a length of the elongated member to the tip to form an opening defined on the tip portion and coupled to the etched trench. A flexible region is defined within the elongated member to allow the tip to adjust in position upon contact with the surface of the substrate. A fluid is disposed within the etched trench. The fluid is output through the opening on the tip to form more than one spots on the surface of the substrate.
Abstract:
A microfluidic device comprises pumps, valves, and fluid oscillation dampers. In a device employed for sorting, an entity is flowed by the pump along a flow channel through a detection region to a junction. Based upon an identity of the entity determined in the detection region, a waste or collection valve located on opposite branches of the flow channel at the junction are actuated, thereby routing the entity to either a waste pool or a collection pool. A damper structure may be located between the pump and the junction. The damper reduces the amplitude of oscillation pressure in the flow channel due to operation of the pump, thereby lessening oscillation in velocity of the entity during sorting process. The microfluidic device may be formed in a block of elastomer material, with thin membranes of the elastomer material deflectable into the flow channel to provide pump or valve functionality.
Abstract:
The invention provides a microfabricated device for sorting cells based on a desired characteristic, for example, reporter-labeled cells can be sorted by the presence or level of reporter on the cells. The device includes a chip having a substrate into which is microfabricated at least one analysis unit. Each analysis unit includes a main channel, having a sample inlet channel, typically at one end, and a detection region along a portion of its length. Adjacent and downstream from the detection region, the main channel has a discrimination region or branch point leading to at least two branch channels. The analysis unit may further include additional inlet channels, detection points, branch points, and branch channels as desired. A stream containing cells is passed through the detection region, such that on average one cell occupies the detection region at a given time. The cells can be sorted into an appropriate branch channel based on the presence or amount of a detectable signal such as an optical signal, with or without stimulation, such as exposure to light in order to promote fluorescence.
Abstract:
High-density microfluidic chips contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large scale integration (LSI). A component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. These integrated microfluidic networks can be used to construct a variety of highly complex microfluidic devices, for example the microfluidic analog of a comparator array, and a microfluidic memory storage device resembling electronic random access memories.
Abstract:
Techniques for processing gene expression data and predicting gene relationships are provided. More specifically, a method for processing gene expression ratios may include discretizing a first expression ratio for a first gene and a second expression ratio for a second gene for each of a plurality of experiments into one of three indications, calculating the probability that the combination of the discretized expression ratios for each of the plurality of experiments arises by random chance, and determining whether the first gene and the second gene are related.
Abstract:
The present invention provides a microfluidic device for synthesizing an array of compounds and methods for using the same. In particular, the microfluidic device of the present invention comprises a solid support base, an elastomeric layer attached to the solid support, and a plurality of flow channels located within the interface between the solid support and the elastomeric layer. In addition, the solid support comprises a functional group for forming a bond with a reactive reagent. In some embodiments, the microfluidic device further comprises a second plurality of flow channels that intersect the first plurality of flow channels. A plurality of control channels are also present in the microfluidic devices of the present invention. The control channels can be actuated to regulate flow of fluids within the flow channel(s).
Abstract:
A microfluidic device for analyzing and/or sorting biological materials (e.g., molecules such as polynucleotides and polypeptides, including proteins and enzymes; viruses and cells) and methods for its use are provided. The device and methods of the invention are useful for sorting particles, e.g. virions. The invention is also useful for high throughput screening, e.g. combinatorial screening. The microfluidic device comprises a main channel and an inlet region in communication with the main channel at a droplet extrusion region. Droplets of solution containing the biological material are deposited into the main channel through the droplet extrusion region. A fluid different from and incompatible with the solution containing the biological material flows through the main channel so that the droplets containing the biological material do not diffuse or mix. Biological material within the droplets can be analyzed and/or sorted by detecting a predetermined characteristic of the biological sample in each droplet and sorting the droplet accordingly.
Abstract:
The invention relates to a microfabricated device for the rapid detection of DNA, proteins or other molecules associated with a particular disease. The devices and methods of the invention can be used for the simultaneous diagnosis of multiple diseases by detecting molecules (e.g. amounts of molecules), such as polynucleotides (e.g., DNA) or proteins (e.g., antibodies), by measuring the signal of a detectable reporter associated with hybridized polynucleotides or antigen/antibody complex. In the microfabricated device according to the invention, detection of the presence of molecules (i.e., polynucleotides, proteins, or antigen/antibody complexes) are correlated to a hybridization signal from an optically-detectable (e.g. fluorescent) reporter associated with the bound molecules. These hybridization signals can be detected by any suitable means, for example optical, and can be stored for example in a computer as a representation of the presence of a particular gene. Hybridization probes can be immobilized on a substrate that forms part of or is exposed to a channel or channels of the device that form a closed loop, for circulation of sample to actively contact complementary probes. Universal chips according to the invention can be fabricated not only with DNA but also with other molecules such as RNA, proteins, peptide nucleic acid (PNA) and polyamide molecules.