Abstract:
Embodiments herein describe apparatuses, systems, and methods for signaling to support downlink coordinated multipoint (CoMP) communications with a user equipment (UE) in a wireless communication network. In embodiments, the UE may be configured with a plurality of channel state information (CSI) processes (e.g., via radio resource control (RRC) signaling) to use for providing CSI feedback to an evolved Node B (eNB) to support downlink CoMP communications. The UE may be configured with a plurality of sets of CSI processes. The UE may further receive a downlink control information (DCI) message from the eNB that indicates one of the configured sets of CSI processes on which the UE is to provide CSI feedback to the UE. The UE may generate the CSI feedback for the indicated set of CSI processes, and transmit the CSI feedback to the eNB in a CSI report.
Abstract:
Embodiments of the present invention provide a virtual multicarrier design for orthogonal frequency division multiple access communications. Other embodiments may be described and claimed.
Abstract:
Briefly, in accordance with one or more embodiments, user equipment receives unicast services from a first carrier of a primary serving cell and determines if Multimedia Broadcast and Multicast services (MBMS) services are available on a second carrier based at least in part on information in a broadcast carrier channel that indicates the second carrier or an identification (ID) of the second carrier. If MBMS services are available on the second carrier, the user equipment at least temporarily switches to the second carrier to receive the MBMS services. The user equipment may provide feedback to the network or the primary serving cell when it starts and stops receiving MBMS services, and then may switch back to the primary serving cell when MBMS services have ended or the user equipment no longer desires to receive MBMS services.
Abstract:
Methods, apparatuses, and systems are described related to interference averaging to generate feedback information and interference averaging to demodulate receives signals. In embodiments, an evolved Node B (eNB) may transmit interference averaging information to a user equipment (UE) including a time domain averaging indicator indicating a time domain averaging window to be used by the UE for averaging interference measurements in a time domain or a frequency domain averaging indicator to indicate a frequency domain averaging window to be used by the UE for averaging interference measurements in a frequency domain. Additionally, or alternatively, the eNB may transmit an interference resource group (IRG) indicator to the UE to indicate an IRG over which the UE is to perform interference averaging to facilitate demodulation of signals received by the UE from the eNB.
Abstract:
Systems and methods for providing opportunistic carrier aggregation to short range or low power extension carriers are generally disclosed herein. One embodiment includes data traffic offload techniques to offload data communicated in a Wireless Wide Area Network (WWAN) from a primary cell to a secondary cell. For example, the primary cell may be provided by a LTE/LTE-A base station operating in licensed spectrum, and the secondary cell may be provided by a low-power extension carrier operating in unlicensed spectrum using a LTE/LTE-A standard. The low-power extension carrier may be activated as needed to offload data transfers from the primary cell, in download-only, upload-only, and time-division LTE (TD-LTE) modes. Configurations involving multimode base stations, multi mode user equipment (UE), relay extension carriers, and remote radio equipment are also described herein, in conjunction with deployment of opportunistic carrier aggregation using extension carriers.
Abstract:
Technology for an eNodeB operable to maintain timing advance groups (TAGs) is disclosed. The eNodeB can form a timing advance group (TAG) for one or more serving cells. The eNodeB can map each of the one or more serving cells to the TAG using signaling from the eNodeB. The eNodeB can assign a timing advance group identifier (TAG ID) to the one or more serving cells mapped to the TAG.
Abstract:
Embodiments of a system and method for reporting uplink control information (UCI) are generally described herein. In some embodiments, a first and second component carrier (CC) is provided for a user equipment (UE). The first and second CC are configured with transmission mode (TM) 10 and TMs 1-9, respectively. A first channel state information (CSI) report for the first CC with TM 10 and a second CSI report for the second CC with at least one of TMs 1-9 are scheduled for transmission in a subframe. A collision is detected between the first and second CSI reports. Priority is assigned to the first CSI report or the second CSI report based on a prioritization parameter. The prioritized CSI report is transmitted based the prioritization parameter.
Abstract:
Disclosed embodiments may include an apparatus having one or more processors coupled to one or more computer-readable storage media. The one or more processors may be configured to transmit and/or receive channel state information reference signal (CSI-RS) resource configuration information, demodulation reference signals (DM-RS), uplink sounding reference signals (SRS), and power control parameters to support uplink coordinated multi-point (CoMP) operations. Other embodiments may be disclosed.
Abstract:
Coordinated Multipoint (CoMP) involves multiple transmission points or cells coordinating their individual transmissions so that a target user equipment (UE) experiences enhanced signal reception and/or reduced interference. In order to optimally implement downlink CoMP, a serving cell needs to obtain channel state information (CSI) for the downlink channels from the multiple transmission points to the UE. This disclosure deals with radio resource control (RRC) signaling for configuring the UE to obtain and report CSI for those downlink channels.
Abstract:
Technology for periodic channel state information (CSI) reporting from a user equipment (UE) configured for carrier aggregation is disclosed. One method can include the UE generating a plurality of periodic CSI reports for transmission in a subframe for a plurality of CSI processes, wherein each periodic CSI report corresponds to a CSI process with a CSI process index. A single periodic CSI report from the plurality of periodic CSI reports may be selected to multiplex with a hybrid automatic repeat request-acknowledgement (HARQ-ACK) feedback. The periodic CSI report multiplex with the HARQ-ACK feedback and any scheduling request (SR) may be determined to have a bit size less than or equal to a physical uplink control channel (PUCCH) format 3 maximum payload bit size. The periodic CSI report multiplexed with the HARQ-ACK feedback and any SR may be transmitted to a serving cell.