Abstract:
A stacked chip package including a device substrate having an upper surface, a lower surface and a sidewall is provided. The device substrate includes a sensing region or device region, a signal pad region and a shallow recess structure extending from the upper surface toward the lower surface along the sidewall. A redistribution layer is electrically connected to the signal pad region and extends into the shallow recess structure. A wire has a first end disposed in the shallow recess structure and electrically connected to the redistribution layer, and a second end electrically connected to a first substrate and/or a second substrate disposed under the lower surface. A method for forming the stacked chip package is also provided.
Abstract:
An embodiment of the invention provides a chip package which includes: a semiconductor substrate having an upper surface and a lower surface; a device region or sensing region defined in the semiconductor substrate; a conducting pad located on the upper surface of the semiconductor substrate; at least two recesses extending from the upper surface towards the lower surface of the semiconductor substrate, wherein sidewalls and bottoms of the recesses together form a sidewall of the semiconductor substrate; a conducting layer electrically connected to the conducting pad and extending from the upper surface of the semiconductor substrate to the sidewall of the semiconductor substrate; and an insulating layer located between the conducting layer and the semiconductor substrate.
Abstract:
A chip package including a first substrate having an upper surface, a lower surface and a sidewall is provided. A sensing region or device region and a conducting pad are adjacent to the upper surface. A through-hole penetrates the first substrate. A redistribution layer extends from the lower surface into the through-hole and is electrically connected to the conducting pad. The redistribution layer further laterally extends from the lower surface to protrude from the sidewall. A method for forming the chip package is also provided.
Abstract:
A sensing module is provided. The sensing module includes a sensing device. The sensing device includes a first substrate having a first surface and a second surface opposite thereto. The sensing device also includes a sensing region adjacent to the first surface and a conducting pad on the first surface. The sensing device further includes a redistribution layer on the second surface and electrically connected to the conducting pad. The sensing module also includes a second substrate and a cover plate bonded to the sensing device so that the sensing device is between the second substrate and the cover plate. The conducting pad is electrically connected to the second substrate through the redistribution layer. The sensing module further includes an encapsulating layer filled between the second substrate and the cover plate to surround the sensing device.
Abstract:
A fabrication method of a semiconductor package includes: disposing a first wafer on a substrate having at least a conductive pad; stacking a second wafer on the first wafer, wherein the second wafer has a pre-open area corresponding in position to the conductive pad of the substrate; forming a protection layer on the second wafer; embrittling the protection layer on the pre-open area of the second wafer; and removing the embrittled portion of the protection layer and portions of the second and first wafers so as to form an opening to expose the conductive pad, thereby preventing an adhesive layer from being attached to a cutting tool as in the prior art.
Abstract:
This present invention provides a chip scale sensing chip package, comprising a sensing chip having a first top surface and a first bottom surface opposite to each other, a touch plate having a second top surface and a second bottom surface opposite to each other, formed above the sensing chip, and a color layer, sandwiched between the sensing chip and the touch plate, wherein the sensing chip comprises a sensing device formed nearby the first top surface and a plurality of conductive pads formed nearby the first top surface and adjacent to the sensing device, a plurality of through silicon vias exposing their corresponding conductive pads formed on the first bottom surface, a plurality of conductive structures formed on the first bottom surface, and a re-distribution layer overlaying the first bottom surface and each through silicon via to electrically connect each conductive pad and each conductive structure.
Abstract:
A chip package includes a chip, an adhesive layer, and a dam element. The chip has a sensing area, a first surface, and a second surface that is opposite to the first surface. The sensing area is located on the first surface. The adhesive layer covers the first surface of the chip. The dam element is located on the adhesive layer and surrounds the sensing area. The thickness of the dam element is in a range from 20 μm to 750 μm, and the wall surface of the dam element surrounding the sensing area is a rough surface.
Abstract:
A chip package including a semiconductor substrate is provided. A recess is in the semiconductor substrate, wherein the semiconductor substrate has at least one spacer protruding from the bottom of the recess. A conducting layer is disposed on the semiconductor substrate and extends into the recess. A method for forming the chip package is also provided.
Abstract:
A chip package is provided. The chip package includes a chip having an upper surface, a lower surface and a sidewall. The chip includes a sensing region or device region and a signal pad region adjacent to the upper surface. A shallow recess structure is located outside of the signal pad region and extends from the upper surface toward the lower surface along the sidewall. The shallow recess structure has at least a first recess and a second recess under the first recess. A redistribution layer is electrically connected to the signal pad region and extends into the shallow recess structure. A first end of a wire is located in the shallow recess structure and is electrically connected to the redistribution layer. A second end of the wire is used for external electrical connection. A method for forming the chip package is also provided.
Abstract:
An embodiment of the invention provides a chip package, which includes: a semiconductor substrate having a device region; a package layer disposed on the semiconductor substrate; a spacing layer disposed between the semiconductor substrate and the package layer and surrounding the device region; and an auxiliary pattern having a hollow pattern formed in the spacing layer, a material pattern located between the spacing layer and the device region, or combinations thereof.