摘要:
A semiconductor device has an element interconnection 2, a top-layer element interconnection 4, a super-connect interconnection 10 and a bump 7. The element interconnection 2 is provided on a semiconductor substrate 1 through a plurality of insulating layers 50. The top-layer element interconnection 4 is formed above the element interconnection 2 by using a substantially equivalent process equipment. The super-connect interconnection 10 is provided on the top-layer element interconnection 4 through a super-connect insulating layer 9 having a thickness five or more times larger than that of the insulating layer 5, and has a thickness three or more times larger than that of each the element interconnection 2 and the top-layer element interconnection 4. The bump 7 is formed on the super-connect interconnection 10. The top-layer element interconnection 4 has a signal pad 4s, a power source pad 4v and a ground pad 4g. An area of the signal pad 4s is smaller than each area of the power source pad 4v and the ground pad 4g.
摘要:
A wiring board is configured by stacking one or more conductor wiring layers and one or more insulating resin layers and comprising one or more metal vias configured to penetrate the insulating resin layer, wherein the boundary surface between the metal via and the insulating resin layer has a concavo-convex boundary cross-section structure in which the metal via and the insulating resin layer are engaged with each other.
摘要:
A wiring substrate for mounting semiconductors is provided with an insulation film, wires formed in the insulation film, and a plurality of electrode pads that electrically connect to the wires through vias. The electrode pads are provided to have their surfaces exposed to both of the front surface and the rear surface of the insulation film, and at least a part of the side surface of the electrode pads is buried in the insulation film. The insulation film is formed by forming electrode pads on the respective two metallic plates, thereafter, laminating an insulation layer and wires on the respective metallic plates to cover the electrode pad, and adhering the insulation layers to each other for integration, and thereafter, removing the metallic plates.
摘要:
A semiconductor device has an element interconnection 2, a top-layer element interconnection 4, a super-connect interconnection 10 and a bump 7. The element interconnection 2 is provided on a semiconductor substrate 1 through a plurality of insulating layers 50. The top-layer element interconnection 4 is formed above the element interconnection 2 by using a substantially equivalent process equipment. The super-connect interconnection 10 is provided on the top-layer element interconnection 4 through a super-connect insulating layer 9 having a thickness five or more times larger than that of the insulating layer 5, and has a thickness three or more times larger than that of each the element interconnection 2 and the top-layer element interconnection 4. The bump 7 is formed on the super-connect interconnection 10. The top-layer element interconnection 4 has a signal pad 4s, a power source pad 4v and a ground pad 4g. An area of the signal pad 4s is smaller than each area of the power source pad 4v and the ground pad 4g.
摘要:
[Problem to be Solved] There are provided a circuit substrate, an electronic device arrangement and a manufacturing process for the circuit substrate which enable to directly implement the surface mounting and so on of electronic components on the conductive wiring without forming solder resist, and also which enable to enhance high speed transmission characteristics and to enlarge wiring rule for the electrode terminal of the function element to be contained therein, and to implement with excellent workability and reliability when connecting the electronic device.[Solution] A circuit substrate comprising a function element 1 with an electrode terminal 5 a base member containing the function element 1 therein and having at least one layer of a conductive wiring formed on its front side face and rear side face respectively, and a via 6 connecting the electrode terminal 5 with the conductive wiring 3 formed on the base member, wherein the conductive wiring formed on either one of the front side face and the rear side face of the base member is arranged such that a surface exposed outside from the base member is in the same plane with or inside a surface of the base member on which the conductive wiring is formed.
摘要:
A wiring substrate includes a base insulating film, a first interconnection formed on a top surface side of the base insulating film, a via conductor provided in a via hole formed in the base insulating film, and a second interconnection provided on a bottom surface side of the base insulating film, the second interconnection being connected to the first interconnection via the via conductor. The wiring substrate includes divided-substrate-unit regions, in each of which the first interconnection, the via conductor, and the second interconnection are formed. The wiring substrate includes a warpage-controlling pattern on the base insulating film, and has a warped shape such that when the wiring substrate is left at rest on a horizontal plate, at least a central part of each side of a plane surface of the substrate contacts the horizontal plate, with both ends of the side raised, where each of the sides extends along a second direction perpendicular to a first direction in the plane surface of the substrate.
摘要:
In a thin film transistor, each of an upper electrode and a lower electrode is formed of at least one material selected from the group consisting of a metal and a metal nitride, represented by TiN, Ti, W, WN, Pt, Ir, Ru. A capacitor dielectric film is formed of at least one material selected from the group consisting of ZrO2, HfO2, (Zrx, Hf1-x)O2 (0
摘要翻译:在薄膜晶体管中,上部电极和下部电极中的每一个由选自由TiN,Ti,W,WN,Pt,Ir,Ru所示的金属和金属氮化物组成的组中的至少一种形成 。 电容器电介质膜由选自ZrO 2,HfO 2 2,(Zr x x,Hf)2, (0
摘要:
A semiconductor device having a logic section and a memory section that are formed on the same semiconductor chip, including: a first transistor formed in the logic section and having gate electrodes and source and drain regions, and a second transistor formed in the memory section having gate electrodes, source and drain regions and a capacitor, the capacitor being of a MIM structure and having an upper and a lower metal electrode and a capacitor dielectric film sandwiched therebetween, the capacitor dielectric film being formed of a dielectric material which is selected from the group consisting of ZrO2, Hf92, (Zrx, Hf1-x)O2 (0
摘要:
A wiring board comprising a first surface on which a first electrode is disposed and a second surface on which a second electrode is disposed; at least a single insulation layer and at least a single wiring layer; and one or a plurality of mounted semiconductor elements, wherein the second electrode disposed on the second surface is embedded in the insulation layer, the surface on the opposite side of the exposed surface on the second surface side of the second electrode is connected to the wiring layer, and all or part of the side surface of the second electrode does not make contact with the insulation layer.
摘要:
A semiconductor device comprising a flat wiring board, a first LSI disposed on one surface of the wiring board, a sealing resin for covering the one surface and a side face of the first semiconductor element, and a second LSI disposed on another surface of the wiring board. The wiring board has conductive wiring as a wiring layer, an insulation resin as a support layer for the wiring layer, and a conductive through-hole that passes through the wiring layer and the support layer. Connection points between lands disposed in positions in which the external peripheral edges of the semiconductor elements transverse the interior of the lands as viewed vertically from above, which lands are selected from land portions on which the external connection terminals are formed, and the wiring board formed in the same plane as the lands, are unevenly distributed toward one side of the wiring board. Connections for very small wiring are thereby made possible, and a plurality of semiconductor elements can be very densely connected.