Abstract:
A bumped semiconductor device contact structure is disclosed including at least one non-planar contact pad having a plurality of projections extending therefrom for contacting at least one solder ball of a bumped integrated circuit (IC) device, such as a bumped die and a bumped packaged IC device. The projections are arranged to make electrical contact with the solder balls of a bumped IC device without substantially deforming the solder ball. Accordingly, reflow of solder balls to reform the solder balls is not necessary with the contact pad of the present invention. Such a contact pad may be provided on various testing equipment such as probes and the like and may be used for both temporary and permanent connections.
Abstract:
An apparatus for testing unpackaged semiconductor dice having raised ball contact locations is disclosed. The apparatus uses a temporary interconnect wafer that is adapted to establish an electrical connection with the raised ball contact locations on the die without damage to the ball contact locations. The interconnect is fabricated on a substrate, such as silicon, where contact members are formed in a pattern that matches the size and spacing of the ball contact locations on the die to be tested. The contact members on the interconnect wafer are formed as either pits, troughs, or spike contacts. The spike contacts penetrate through the oxide layer formed on the raised ball contact locations. Conductive traces are provided in both rows and columns and are terminated on the inner edges of the walls of the pits formed in the substrate.
Abstract:
An inventive electronic device, such as a multi-chip module (MCM), a Single In-line Memory Module (SIMM), or a Dual In-line Memory Module (DIMM), includes a base, such as a printed circuit board, having a surface on which flip-chip pads and wire-bondable pads are provided. The flip-chip pads define an area on the surface of the base at least partially bounded by the wire-bondable pads. A first integrated circuit (IC) die is flip-chip bonded to the flip-chip pads, and a second IC die is back-side attached to the first IC die and then wire-bonded to the wire-bondable pads. As a result, the flip-chip mounted first IC die is stacked with the second IC die in a simple, novel manner.
Abstract:
Methods for forming vias are disclosed. The methods include providing a substrate having a first surface and an opposing, second surface. The vias are formed within the substrate to have a longitudinal axis sloped at an angle with respect to a reference line extending perpendicular to the first surface and the second surface of the substrate. The vias may be formed from the first surface to the opposing second surface, or the via may be formed as a first blind opening from the first surface, then a second opening may be formed from the second surface to be aligned with the first opening. Vias may be formed completely through a first substrate and a second substrate, and the substrates may be bonded together. Semiconductor devices including the vias of the present invention are also disclosed. A method of forming spring-like contacts is also disclosed.
Abstract:
A method of activating a metal structure on an intermediate semiconductor device structure toward metal plating. The method comprises providing an intermediate semiconductor device structure comprising at least one first metal structure and at least one second metal structure on a semiconductor substrate. The at least one first metal structure comprises at least one aluminum structure, at least one copper structure, or at least one structure comprising a mixture of aluminum and copper and the at least one second metal structure comprises at least one tungsten structure. One of the at least one first metal structure and the at least one second metal structure is activated toward metal plating without activating the other of the at least one first metal structure and the at least one second metal structure. An intermediate semiconductor device structure is also disclosed.
Abstract:
Microelectronic imager assemblies comprising a workpiece including a substrate and a plurality of imaging dies on and/or in the substrate. The substrate includes a front side and a back side, and the imaging dies comprise imaging sensors at the front side of the substrate and external contacts operatively coupled to the image sensors. The microelectronic imager assembly further comprises optics supports superimposed relative to the imaging dies. The optics supports can be directly on the substrate or on a cover over the substrate. Individual optics supports can have (a) an opening aligned with one of the image sensors, and (b) a bearing element at a reference distance from the image sensor. The microelectronic imager assembly can further include optical devices mounted or otherwise carried by the optics supports.
Abstract:
Methods of packaging microelectronic imagers and packaged microelectronic imagers. An embodiment of such a method can include providing an imager workpiece having a plurality of imager dies arranged in a die pattern and providing a cover substrate through which a desired radiation can propagate. The imager dies include image sensors and integrated circuitry coupled to the image sensors. The method further includes providing a spacer having a web that includes an adhesive and has openings arranged to be aligned with the image sensors. For example, the web can be a film having an adhesive coating, or the web itself can be a layer of adhesive. The method continues by assembling the imager workpiece with the cover substrate such that (a) the spacer is between the imager workpiece and the cover substrate, and (b) the openings are aligned with the image sensors. The attached web is not cured after the imager workpiece and the cover substrate have both been adhered to the web. As such, the web does not outgas contaminants into the compartments in which the image sensors are housed.
Abstract:
Methods for forming vias are disclosed. The methods include providing a substrate having a first surface and an opposing, second surface. The vias are formed within the substrate to have a longitudinal axis sloped at an angle with respect to a reference line extending perpendicular to the first surface and the second surface of the substrate. The vias may be formed from the first surface to the opposing second surface, or the via may be formed as a first blind opening from the first surface, then a second opening may be formed from the second surface to be aligned with the first opening. Vias may be formed completely through a first substrate and a second substrate, and the substrates may be bonded together. Semiconductor devices including the vias of the present invention are also disclosed. A method of forming spring-like contacts is also disclosed.
Abstract:
An inventive electronic device, such as a multi-chip module (MCM), a Single In-line Memory Module (SIMM), or a Dual In-line Memory Module (DIMM), includes a base, such as a printed circuit board, having a surface on which flip-chip pads and wire-bondable pads are provided. The flip-chip pads define an area on the surface of the base at least partially bounded by the wire-bondable pads. A first integrated circuit (IC) die is flip-chip bonded to the flip-chip pads, and a second IC die is back-side attached to the first IC die and then wire-bonded to the wire-bondable pads. As a result, the flip-chip mounted first IC die is stacked with the second IC die in a simple, novel manner.
Abstract:
A compliant contact pin assembly and a contactor card system are provided. A compliant contact pin assembly includes a contact pin formed from a portion of a substrate with the contact pin compliantly held suspended within the substrate by a compliant coupling structure. The suspension within the substrate results in a compliant deflection orthogonal to the plane of the substrate. The contact pin assembly is formed by generally thinning the substrate around the contact pin location and then specifically thinning the substrate immediately around the contact pin location for forming a void. The contact pin is compliantly coupled, in one embodiment by compliant coupling material, and in another embodiment by compliantly flexible portions of the substrate.