Abstract:
A method of making a stackable semiconductor assembly that includes a semiconductor device, a heat spreader, an adhesive, a plated through-hole, first build-up circuitry and second build-up circuitry is disclosed. The heat spreader includes a bump and a flange. The bump defines a cavity. The semiconductor device is mounted on the bump at the cavity, electrically connected to the first build-up circuitry and thermally connected to the bump. The bump extends into an opening in the adhesive and the flange extends laterally from the bump at the cavity entrance. The first build-up circuitry and the second build-up circuitry extend beyond the semiconductor device in opposite vertical directions. The plated through-hole extends through the adhesive and provides signal routing between the first build-up circuitry and the second build-up circuitry. The heat spreader provides heat dissipation for the semiconductor device.
Abstract:
A method of making a semiconductor chip assembly includes providing a post, a base, an ESD protection layer and a metal layer, wherein the post extends above the base and the ESD protection layer is sandwiched between the base and the metal layer, mounting an adhesive on the base including inserting the post into an opening in the adhesive, mounting a conductive layer on the adhesive including aligning the post with an aperture in the conductive layer, then flowing the adhesive upward between the post and the conductive layer, solidifying the adhesive, then providing a conductive trace that includes a pad, a terminal and a selected portion of the conductive layer, providing a heat spreader that includes the post, the base, the ESD protection layer and an underlayer that includes at least a portion of the metal layer, then mounting a semiconductor device on the post, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The heat spreader includes a bump that includes first, second and third bent corners that shape a cavity. The conductive trace includes a pad and a terminal. The semiconductor device is located within the cavity, is electrically connected to the conductive trace and is thermally connected to the bump. The bump extends into an opening in the adhesive and provides a recessed die paddle and a reflector for the semiconductor device. The conductive trace provides signal routing between the pad and the terminal.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The heat spreader includes a bump, a base and a flange. The conductive trace includes a pad and a terminal. The semiconductor device extends into a cavity in the bump, is electrically connected to the conductive trace and is thermally connected to the bump. The bump extends from the base into an opening in the adhesive, the base extends vertically from the bump opposite the cavity and the flange extends laterally from the bump at the cavity entrance. The conductive trace is located outside the cavity and provides signal routing between the pad and the terminal.
Abstract:
A method of making a semiconductor chip assembly includes providing a bump and a ledge, wherein the bump includes first, second and third bent corners that shape a cavity, mounting an adhesive on the ledge including inserting the bump into an opening in the adhesive, mounting a conductive layer on the adhesive including aligning the bump with an aperture in the conductive layer, then flowing the adhesive between the bump and the conductive layer, solidifying the adhesive, then providing a conductive trace that includes a pad, a terminal and a selected portion of the ledge, providing a heat spreader that includes the bump, then mounting a semiconductor device on the bump within the cavity, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and an adhesive. The semiconductor device is electrically connected to the conductive trace and thermally connected to the heat spreader. The heat spreader is aluminum and includes a post and a base. The post extends upwardly from the base into an opening in the adhesive, and the base extends laterally from the post. The adhesive extends between the post and the conductive trace and between the base and the conductive trace. The conductive trace includes a silver coating and a copper core and provides signal routing between a pad and a terminal.
Abstract:
A method of making a semiconductor chip assembly includes providing a thermal post, a signal post, a base and a terminal, mounting an adhesive on the base including inserting the thermal post into a first opening in the adhesive and the signal post into a second opening in the adhesive, mounting a conductive layer on the adhesive including aligning the thermal post with a first aperture in the conductive layer and the signal post with a second aperture in the conductive layer, then flowing the adhesive upward between the thermal post and the conductive layer and between the signal post and the conductive layer and downward between the base and the terminal, solidifying the adhesive, providing a conductive trace that includes a pad, the terminal and the signal post, wherein the pad includes a selected portion of the conductive layer, mounting a semiconductor device on a heat spreader that includes the thermal post and the base, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A method of making a semiconductor chip assembly includes providing a post and a base, mounting an adhesive on the base including inserting the post into an opening in the adhesive, mounting a substrate on the adhesive including aligning the post with an aperture in the substrate, then flowing the adhesive into and upward in a gap located in the aperture between the post and the substrate, solidifying the adhesive, then etching the post to form a cavity in the adhesive above the post, then mounting a semiconductor device on the post, wherein a heat spreader includes the post and the base and the semiconductor device extends into the cavity, electrically connecting the semiconductor device to the substrate and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A method of making a semiconductor chip assembly includes providing a post and a base, mounting an adhesive on the base including inserting the post into an opening in the adhesive, mounting a copper layer on the adhesive including aligning the post with an aperture in the copper layer, then flowing the adhesive into and upward in a gap located in the aperture between the post and the copper layer, solidifying the adhesive, then providing a conductive trace that includes a pad, a terminal, a silver coating and a copper core that is a selected portion of the copper layer, mounting a semiconductor device on the post, wherein an aluminum heat spreader includes the post and the base, electrically connecting the semiconductor device to the conductive trace and thermally connecting the semiconductor device to the heat spreader.
Abstract:
A semiconductor chip assembly includes a semiconductor chip that includes a conductive pad, a conductive trace that includes a routing line, a metal pillar and an enlarged plated contact terminal, a connection joint that electrically connects the routing line and the pad, and an encapsulant. The chip and the metal pillar are embedded in the encapsulant, the routing line extends laterally beyond the metal pillar towards the chip, the metal pillar is welded to the routing line and includes a ball bond and a stem, and the plated contact terminal is plated on the stem.