Abstract:
A semiconductor device arrangement includes a first semiconductor device having a load path, and a number of second transistors, each having a load path between a first and a second load terminal and a control terminal. The second transistors have their load paths connected in series and connected in series to the load path of the first transistor. Each of the second transistors has its control terminal connected to the load terminal of one of the other second transistors. One of the second transistors has its control terminal connected to one of the load terminals of the first semiconductor device.
Abstract:
An apparatus and a method configured to lower thermal stress is disclosed. One embodiment provides a semiconductor chip, a heat sink plate and a layer structure. The layer structure includes at least a diffusion solder layer and a buffer layer. The layer structure is arranged between the semiconductor chip and the heat sink plate. The buffer layer includes a material, which is soft in comparison to a material of the diffusion solder layer, and includes a layer thickness such that thermal stresses in the semiconductor chip remain below a predetermined value during temperature fluctuations within a temperature range.
Abstract:
An integrated semiconductor device is provided. The integrated semiconductor device has a first semiconductor region of a second conductivity type, a second semiconductor region of a first conductivity type forming a pn-junction with the first semiconductor region, a non-monocrystalline semiconductor layer of the first conductivity type arranged on the second semiconductor region, a first well and at least one second well of the first conductivity type arranged on the non-monocrystalline semiconductor layer and an insulating structure insulating the first well from the at least one second well and the non-monocrystalline semiconductor layer. Further, a method for forming a semiconductor device is provided.
Abstract:
Cylindrical optical components of quartz glass are known, which have an inner zone made of an inner zone glass, which extends in the direction of the longitudinal axis and is surrounded by a jacket zone made of a jacket zone glass, the average pt wall thickness thereof varying at least over a part of its length in the direction of the longitudinal axis of the component. The aim of the invention is to provide a method that allows a simple and cost-effective production of such an optical component from quartz glass. A method is proposed according to the invention, comprising the following method steps: (a) providing a first parison made of an inner zone glass, which has a first contact surface on the end face, said contact surface having a conical external contour; (b) providing a second parison from the jacket zone glass; (c) embedding the contact surface with a conical external contour into the jacket zone glass and welding the contact surface to the jacket zone glass, thereby forming a composite parison which has a cone-shaped inner zone area of inner zone glass in a contact area, said inner zone area being surrounded by a jacket zone having the shape of an inner cone; and (d) elongation of the composite parison to form the optical component or a preproduct of the component.
Abstract:
An apparatus and a method configured to lower thermal stress is disclosed. One embodiment provides a semiconductor chip, a lead frame and a layer structure. The layer structure includes at least a diffusion solder layer and a buffer layer. The layer structure is arranged between the semiconductor chip and the lead frame. The buffer layer includes a material, which is soft in comparison to a material of the diffusion solder layer, and includes a layer thickness such that thermal stresses in the semiconductor chip remain below a predetermined value during temperature fluctuations within a temperature range.
Abstract:
A semiconductor device exhibits a first metal layer, made of a first metal, with at least one contiguous subsection. At least one second metal layer, made of a second metal, is placed on the contiguous subsection of the first metal layer. The second metal is harder than the first metal. The second metal layer is structured to form at least two layer regions, which are disposed on the contiguous subsection of the first metal layer. The second metal exhibits a boron-containing or phosphorus-containing metal or a boron-containing or phosphorus-containing metal alloy.
Abstract:
A semiconductor device and manufacturing method is disclosed. One embodiment provides a common substrate of a first conductivity type and at least two wells of a second conductivity type. A buried high Ohmic region and at least an insulating structure is provided insulating the first well from the second well. The insulating structure extends through the buried high Ohmic region and includes a conductive plug in Ohmic contact with the first semiconductor region. A method for forming an integrated semiconductor device is also provided.
Abstract:
A semiconductor device and method is disclosed. One embodiment provides an active region in a semiconductor substrate, including a first terminal region and a second terminal region. wherein the active region is interrupted by an inactive region, wherein an electrical power dissipation in the inactive region is zero or smaller than an electrical power dissipation in the active region; and a metallization layer arranged with respect to the active region on a surface of the semiconductor device and at least partly overlapping the active area, wherein the metallization layer is divided into a first part, in electrical contact to the first terminal region, and a second part, in electrical contact to the second terminal region, wherein the first and the second part are separated by a gap; and wherein the gap and the inactive region are mutually arranged so that an electrical power dissipation below the gap is reduced compared to an electrical power dissipation below the first part and the second part of the metallization layer.
Abstract:
A semiconductor component of semiconductor chip size includes a semiconductor chip. The semiconductor chip has a metallic coating that completely covers the edge sides and the rear side and partly covers the top side, on which surface-mountable external contacts are arranged. One aspect includes power semiconductor components, wherein the metallic coating connects a rear side electrode to one of the surface-mountable external contacts on the top side of a power semiconductor chip.
Abstract:
An apparatus and a method configured to lower thermal stress is disclosed. One embodiment provides a semiconductor chip, a lead frame and a layer structure. The layer structure includes at least a diffusion solder layer and a buffer layer. The layer structure is arranged between the semiconductor chip and the lead frame. The buffer layer includes a material, which is soft in comparison to a material of the diffusion solder layer, and includes a layer thickness such that thermal stresses in the semiconductor chip remain below a predetermined value during temperature fluctuations within a temperature range.