Abstract:
One illustrative method disclosed herein includes, among other things, sequentially forming a first material layer, a first capping layer, a second material layer and a second capping layer above a substrate, wherein the first and second material layers are made of semiconductor material having a lattice constant that is different than the substrate, the first material layer is strained as deposited, and a thickness of the first material layer exceeds its critical thickness required to be stable and strained, performing an anneal process after which the strain in the first material layer is substantially relaxed through the formation of crystallographic defects that are substantially confined to the semiconducting substrate, the first material layer, the first capping layer and the second material layer, and forming additional epitaxial semiconductor material on an upper surface of the resulting structure.
Abstract:
Provided are a composition for forming a layered transition metal chalcogenide compound layer and a method of forming a layered transition metal chalcogenide compound layer by using the composition. The composition includes at least one of a transition metal precursor represented by Formula 1 and a chalcogenide precursor represented by Formula 2. Ma(R1)6-b-c(H)b(R2)c [Formula 1] wherein, in Formula 1, M, R1, R2, a, b, and c are the same as defined in the detailed description, and M′kX2 [Formula 2] wherein, in Formula 2, M′ and X are the same as defined in the detailed description.
Abstract:
In an aspect of the present invention, a field-effect transistor (FET) structure is formed. The FET structure comprises a plurality of fins formed on a semiconductor substrate, wherein the plurality of fins includes a set of fins that include a base portion that is comprised of relaxed silicon-germanium (SiGe) and an upper portion that is comprised of semiconductor material. In one aspect, a first set of one or more fins that include an upper portion comprised of a first semiconductor material. In another aspect, a second set of one or more fins that include an upper portion comprised of a second semiconductor material.
Abstract:
A method is provided for forming an unsupported MoS2 layer in an aqueous medium, the method comprising the steps of: providing an assembly of a Mo oxide layer on a Si substrate; annealing said assembly in presence of H2S at a temperature sufficient for forming a MoS2 layer; and contacting the annealed assembly with an aqueous medium. This unsupported MoS2 layer can then be transferred by dip-coating to another substrate such as a dielectric substrate.
Abstract:
One illustrative method disclosed herein includes, among other things, performing first and second in situ doping, epitaxial deposition processes to form first and second layers of in situ doped epi semiconductor material, respectively, above a semiconductor substrate, wherein one of the first and second layers has a high level of germanium and a low level of P-type dopant material and the other of the first and second layers has a low level of germanium and a high level of P-type dopant material, and performing a mixing thermal anneal process on the first and second layers so as to form the final silicon germanium material having a high level of germanium and a high level of P-type dopant material.
Abstract:
A method for making an epitaxial structure is provided. The method includes the following steps. A substrate having an epitaxial growth surface is provided. A carbon nanotube layer is placed on the epitaxial growth surface. An epitaxial layer is epitaxially grown on the buffer layer. The substrate and the carbon nanotube layer are removed to expose the epitaxial layer.
Abstract:
Techniques for reducing nanowire dimension and pitch are provided. In one aspect, a pitch multiplication method for nanowires includes the steps of: providing an SOI wafer having an SOI layer separated from a substrate by a BOX, wherein the SOI layer includes Si; patterning at least one nanowire in the SOI layer, wherein the at least one nanowire as-patterned has a square cross-sectional shape with flat sides; growing epitaxial SiGe on the outside of the at least one nanowire using an epitaxial process selective for growth of the epitaxial SiGe on the flat sides of the at least one nanowire; removing the at least one nanowire selective to the epitaxial SiGe, wherein the epitaxial SiGe that remains includes multiple epitaxial SiGe wires having been formed in place of the at least one nanowire that has been removed.
Abstract:
A semiconductor device includes a substrate, a buffer layer on the substrate, and a plurality of nitride semiconductor layers on the buffer layer. The semiconductor device further includes at least one masking layer and at least one inter layer between the plurality of nitride semiconductor layers. The at least one inter layer is on the at least one masking layer.
Abstract:
A group-III nitride compound semiconductor light emitting element includes a substrate that has a main face on which an concave and convex portion is formed, a group-III nitride compound semiconductor layer that is formed on the main face of the substrate, and a clearance that is formed between the substrate and the group-III nitride compound semiconductor layer at a first region of the semiconductor light emitting element. In the first region, a portion of the group-III nitride compound semiconductor layer and a portion of the clearance are disposed in a concave of the concave and convex portion on a section through two adjacent top portions of the concave and convex portion and a bottom portion located between the adjacent top portions.
Abstract:
Implementations of the present disclosure generally relate to methods and apparatus for forming a film on a substrate. More particularly, implementations of the present disclosure relate to methods and apparatus for heteroepitaxial growth of crystalline films. In one implementation, a method of heteroepitaxial deposition of a strain relaxed buffer (SRB) layer on a substrate is provided. The method comprises epitaxially depositing a buffer layer over a dissimilar substrate, rapidly heating the buffer layer to relax the buffer layer, rapidly cooling the buffer layer and determining whether the buffer layer has achieved a desired thickness.