Active LED module with LED and vertical MOS transistor formed on same substrate

    公开(公告)号:US10201051B1

    公开(公告)日:2019-02-05

    申请号:US16003544

    申请日:2018-06-08

    Abstract: An LED module is disclosed containing an integrated MOSFET driver transistor in series with an LED. In one embodiment, GaN-based LED layers are epitaxially grown over an interface layer on a silicon substrate. The MOSFET gate is formed in a trench in the silicon substrate and creates a vertical channel between a top source and a bottom drain when the gate is biased to turn on the LED. A conductor on the die connects the MOSFET in series with the LED. One power electrode is located on a top of the die, another power electrode is located on the bottom of the die, and the gate electrode may be on the top or the side of the die.

    PHOTOVOLTAIC MODULE HAVING PRINTED PV CELLS CONNECTED IN SERIES BY PRINTED CONDUCTORS
    80.
    发明申请
    PHOTOVOLTAIC MODULE HAVING PRINTED PV CELLS CONNECTED IN SERIES BY PRINTED CONDUCTORS 有权
    印刷电路连接的印刷光伏电池的光伏组件

    公开(公告)号:US20170077344A1

    公开(公告)日:2017-03-16

    申请号:US15359514

    申请日:2016-11-22

    Abstract: A PV module is formed having an array of PV cells, where the cells are separated by gaps. Each cell contains an array of small silicon sphere diodes (10-300 microns in diameter) connected in parallel. The diodes and conductor layers may be patterned by printing. A continuous metal substrate supports the diodes and conductor layers in all the cells. A dielectric substrate is laminated to the metal substrate. Trenches are then formed by laser ablation around the cells to sever the metal substrate to form electrically isolated PV cells. A metallization step is then performed to connect the cells in series to increase the voltage output of the PV module. An electrically isolated bypass diode for each cell is also formed by the trenching step. The metallization step connects the bypass diode and its associated cell in a reverse-parallel relationship.

    Abstract translation: 形成具有PV电池阵列的PV模块,其中电池被间隙分开。 每个电池都包含并联连接的小硅球二极管阵列(直径10-300微米)。 可以通过印刷将二极管和导体层图案化。 连续的金属基板在所有单元中支撑二极管和导体层。 将电介质基板层压到金属基板上。 然后通过在细胞周围的激光烧蚀形成沟槽,以切断金属基底以形成电隔离的PV电池。 然后执行金属化步骤以串联连接电池,以增加PV模块的电压输出。 用于每个电池的电隔离旁路二极管也通过开沟步骤形成。 金属化步骤以反平行关系连接旁路二极管及其相关联的电池。

Patent Agency Ranking