Abstract:
There is disclosed a method of surface mounting a connector which enables a connector to be automatically mounted while preserving reliability of soldered portions and without additionally providing a special apparatus. The connector is formed to be thick at a portion and thin at another portion with respect to an axis C.sub.1. In surface mounting the connector on the printed circuit board, a hook member is inserted into a through hole formed in advance through the printed circuit board. Then, the reflow process is carried out on the printed circuit board whereby terminals of the chips including the lead pins are soldered. The printed circuit board is reroved from a reflow furnace, and cooled, whereupon the hook member is bent toward a hooking portion side. This brings the hooking portion into engagement with the underside of the printed circuit board, whereby the connector is firmly fixed to the printed circuit board.
Abstract:
A wiring substrate has a semiconductor device mounted thereonto, the semiconductor device having ball-shaped externally connecting parts. The wiring substrate includes through holes at positions corresponding to the ball-shaped externally connecting parts and electric conductors provided inside and around the through holes. Land portions of the electric conductors, at which the electric conductors are engaged with the externally connecting parts, includes sectional tapering portions, respectively. Further, the through holes have sectional tapering portions at edge portions in proximity to the land portions, respectively. The ball-shaped externally connecting parts of the semiconductor device are engaged with the land portions provided around the through holes of the wiring substrate and having the sectional tapering portions, respectively.
Abstract:
Disclosed are an integrated circuit component capable of simply mounting at low cost a chip part which adjusts impedance of wiring patterns as well as capable of effectively reducing switching noise from an integrated circuit, and a method for mounting the chip part. The integrated circuit component of the present invention has a constitution that a bypass capacitor is mounted on a wiring board side of a gap between the wiring board and an LSI chip. Therefore, as compared with a case where the capacitor is mounted on the LSI chip side, a transmission path through the capacitor can be extremely shortened. As a result, inductance components of the feeder line can be reduced, so that a response delay of power transmitted through the feeder line can be sufficiently suppressed.
Abstract:
Disclosed are an integrated circuit component capable of simply mounting at low cost a chip part which adjusts impedance of wiring patterns as well as capable of effectively reducing switching noise from an integrated circuit, and a method for mounting the chip part. The integrated circuit component of the present invention has a constitution that a bypass capacitor is mounted on a wiring board side of a gap between the wiring board and an LSI chip. Therefore, as compared with a case where the capacitor is mounted on the LSI chip side, a transmission path through the capacitor can be extremely shortened. As a result, inductance components of the feeder line can be reduced, so that a response delay of power transmitted through the feeder line can be sufficiently suppressed.
Abstract:
The present invention relates to a BWB wiring design system, and provides a BWB transmission wiring design system capable of guaranteeing the super high-speed operation of a system composed of a BWB and a plurality of printed circuit boards mounted on the BWB. The BWB transmission wiring design system consists mainly of a manager system that manages the wiring in the entire BWB system composed of the plurality of printed circuit boards, and a designer system that designs the wiring on each of the plurality of printed circuit boards while communicating with the manager system. The manager system presents the designer system predetermined design target values relevant to the entire BWB system. Moreover, the manager system presents the designer system the result of judgment made from design information, which is sequentially distributed from the designer system, on whether the design target values can be attained. The designer system finishes a wiring design while referencing the presented design target values and the presented result of judgment.
Abstract:
There is disclosed a method of surface mounting a connector which enables a connector to be automatically mounted while preserving reliability of soldered portions and without additionally providing a special apparatus. The connector is formed to be thick at a portion and thin at another portion with respect to an axis C1. In surface mounting the connector on the printed circuit board, a hook member is inserted into a through hole formed in advance through the printed circuit board. Then, the reflow process is carried out on the printed circuit board whereby terminals of the chips including the lead pins are soldered. The printed circuit board is removed from a reflow furnace, and cooled, whereupon the hook member is bent toward a hooking portion side. This brings the hooking portion into engagement with the underside of the printed circuit board, whereby the connector is firmly fixed to the printed circuit board.
Abstract:
A BGA-type semiconductor device has a soldering bump a soldered state of which can be easily checked by visual inspection. A package has a bottom surface which faces the wiring board when the semiconductor device is mounted on the wiring board. A plurality of soldering bumps are provided on the bottom surface of the package. The soldering bumps are in a plurality of different sizes, and are located in positions where the soldering bumps are observable from outside of the package when the semiconductor device is mounted on the wiring board.
Abstract:
A mask for printing solder paste includes a mask plate, and first mask holes which are formed in the mask plate and have a first size, and second mask holes which are formed in the mask plate and have a second size smaller than the first size. The mask plate has a first region having the first mask holes, and a second region having the second mask holes. The mask plate has a first thickness in the first region, and a second thickness in the second region. The second thickness is smaller than the first thickness.
Abstract:
For use in the fabrication of electronic circuit modules, there is provided a heating furnace which can be arbitrarily set in a desired temperature profile. The furnace includes a plural number of independently controllable heaters located in spaced positions to provide a plural number of heating zones in the furnace, and a plural number of cooling panels provided in the heating zones of the respective heaters. Each heater is independently controlled according to a specified type of substrate to establish a temperature profile for the specified substrate type in the furnace to carry out the curing of a sealing synthetic resin material of a semiconductor device and the reflow soldering of surface mounting devices in one and single furnace.
Abstract:
In an SFP module mounting structure where an SFP module connected to a connector mounted on a printed board is held by a holder, the holder has both side faces which hold the SFP module on the both sides, a flap which is provided on an upper edge of the both side faces so as to make the SFP module insertable and extractable in an oblique upper direction as well as to prevent the SFP module from being disengaged upward and a bottom face which supports the both side faces on the printed board. The connector may be provided with an electrode which is connected to the SFP module when the SFP module is inserted into the holder from the oblique upper direction and which has a returning elastic force enabling the SFP module to move pivotally down to a state that is parallel to the printed board.