Abstract:
An add-in card printed circuit board (PCB) includes a body portion and a card edge portion. The body portion includes a circuit trace associated with a high-speed data communication interface. The card edge portion includes contact fingers, and is configured to be inserted into a card edge connector of an information handling system. The contact fingers include a signal contact finger coupled to the circuit trace, and a ground contact finger that is located adjacent to the signal contact finger. The ground contact finger includes a ground via that couples the ground contact finger to a ground plane layer of the add-in card PCB. The ground via is located half way within the body portion and half way within the card edge portion.
Abstract:
The present disclosure provides a semiconductor module comprising a semiconductor device removably pressed-fit in a cavity formed in a printed circuit board and methods for manufacturing the same. The semiconductor device and the cavity of the printed circuit board can cooperate with each other and act as an electrical plug and an electrical socket respectively. Soldering the semiconductor device on the printed circuit board can be avoided. Therefore, the packaging process can be more flexible and reliability issues with solder joints can be eliminated. Moreover, heatsink can be mounted on top and/or bottom of the semiconductor device after being received in the cavity of the printed circuit board. Thermal dissipation efficiency can be greatly enhanced.
Abstract:
The present disclosure includes an adjustable circuit board assembly including a circuit board, a header connected to the circuit board, and a matrix connector. The header may be configured for connection with the circuit board via a connection matrix and the matrix connector. A method of manufacturing a circuit board assembly may include providing a circuit board, providing a terminal header having a plurality of terminals, providing a connection matrix to at least one of the circuit board and the terminal header, providing a matrix connector, connecting the terminal header with the circuit board via the matrix connector and the connection matrix, and connecting the plurality of terminals to the circuit board.
Abstract:
The objective of the present invention is to improve reliability in a solder connection portion between an electronic component and a wiring pattern. A pair of wiring patterns (31A and 31B) are formed on a circuit wiring board (30) with an insulation layer (37) therebetween. Each wiring pattern (31A and 31B) has a land (33a or 33b) and a wiring portion (34a or 34b) that is narrower than the land. By way of solder (42), a chip component (41) is soldered to the lands (33a and 33b). The x (width) direction center (Xa) of each connection portion (53) where a respective wiring portion (34a or 34b) is connected to a respective land (33a or 33b) is disposed at a position that is outside of both the region in which a region of predetermined width (Wc) of the chip component (41) extends in the x (longitudinal) direction, and the region in which a region of predetermined length (Lc) of the chip component (41) extends in a y (transverse) direction.
Abstract:
Embodiments of the present disclosure are directed toward techniques and configurations for electrical signal absorption in an interconnect stub. In one instance, a printed circuit board (PCB) assembly may comprise a substrate and an interconnect (such as a via) formed in the substrate to route an electrical signal within the PCB. The interconnect may include a stub formed on the interconnect. At least a portion of the stub may be covered with an absorbing material to at least partially absorb a portion of the electric signal that is reflected by the stub. The absorbing material may be selected such that its dielectric loss tangent is greater than one, for a frequency range of a frequency of the reflected portion of the electric signal. A dielectric constant of the absorbing material may be inversely proportionate to the frequency of the reflected electric signal. Other embodiments may be described and/or claimed.
Abstract:
An electronic circuit that needs to transmit or receive radio waves achieves that goal by using an antenna. This disclosure teaches an antenna that can be mounted on an edge of a circuit board. This disclosure teaches antenna shapes that, when mounted on an edge of a circuit board, can advantageously make contact with circuits on both sides of the board. Some antenna shapes have protruding portions with springiness that facilitates affixing the antenna to the board and facilitates reliable electrical contacts with the circuits. The disclosure also teaches methods for mounting an antenna on an edge of a circuit board.
Abstract:
An electrical apparatus is provided with a power semiconductor module, at least one capacitor, a circuit carrier, and a first heat sink. The power semiconductor module and the circuit carrier are arranged on the first heat sink. The electrical apparatus comprises a second heat sink arranged on the power semiconductor module and connected to the first heat sink.
Abstract:
An electronic device includes a support wafer, an electronic chip and an encapsulating block for the electronic chip above the support wafer. The support wafer is provided with a first network of electrical connections and a second network of electrical connections formed solely by tracks. First electrical connection elements are interposed between first front electrical contacts of the electronic chip and rear electrical contacts of the first network. Second electrical connection elements are interposed between second front electrical contacts of the electronic chip and internal electrical contact zones of the tracks of the second network. The first network includes front external electrical contacts and the tracks exhibiting external electrical contact zones.
Abstract:
Embodiments of the present disclosure are directed toward techniques and configurations for electrical signal absorption in an interconnect stub. In one instance, a printed circuit board (PCB) assembly may comprise a substrate and an interconnect (such as a via) formed in the substrate to route an electrical signal within the PCB. The interconnect may include a stub formed on the interconnect. At least a portion of the stub may be covered with an absorbing material to at least partially absorb a portion of the electric signal that is reflected by the stub. The absorbing material may be selected such that its dielectric loss tangent is greater than one, for a frequency range of a frequency of the reflected portion of the electric signal. A dielectric constant of the absorbing material may be inversely proportionate to the frequency of the reflected electric signal. Other embodiments may be described and/or claimed.
Abstract:
A bump electrode is formed on an electrode pad using a Cu core ball in which a core material is covered with solder plating, and a board which has bump electrodes such as semiconductor chip or printed circuit board mounts such a bump electrode. Flux is coated on a substrate and the bump electrodes are then mounted on the electrode pad. In a step of heating the electrode pad and the Cu core ball to melt the solder plating, a heating rate of the substrate is set to have not less than 0.01° C./sec and less than 0.3.