摘要:
Stress barrier structures for semiconductor chips, and methods of fabrication thereof are described. In one embodiment, the semiconductor device includes a semiconductor substrate that includes active circuitry and an interconnect metallization structure over the active circuitry, wherein the interconnect metallization structure includes a layer of low-k insulating layer. A first metal bump is disposed over the semiconductor substrate and coupled to the active circuitry of the semiconductor substrate. A first stress barrier structure is disposed under the metal bump, and disposed over the low-k insulating layer, and a second substrate is disposed over the first metal bump.
摘要:
Methods and devices for connecting a through via and a terminal of a transistor formed of a strained silicon material are provided. The terminal, which can be a source or a drain of a NMOS or a PMOS transistor, is formed within a substrate. A first contact within a first inter-layer dielectric (ILD) layer over the substrate is formed over and connected to the terminal. A through via extends through the first ILD layer into the substrate. A second contact is formed over and connected to the first contact and the through via within a second ILD layer and a contact etch stop layer (CESL). The second ILD layer is over the CESL, and the CESL is over the first ILD layer, which are all below a first inter-metal dielectric (IMD) layer and the first metal layer of the transistor.
摘要:
A semiconductor substrate having a through-silicon via with an air gap interposed between the through-silicon via and the semiconductor substrate is provided. An opening is formed partially through the semiconductor substrate. The opening is first lined with a first liner and then the opening is filled with a conductive material. A backside of the semiconductor substrate is thinned to expose the first liner, which is subsequently removed and a second liner formed with a low-k or extra low-k dielectric is formed in its place.
摘要:
A package structure includes a first die, and a second die over and bonded to the first die. The second die has a size smaller than a size of the first die. A dummy chip is over and bonded onto the first die. The dummy chip includes a portion encircling the second die. The dummy chip includes a material selected from the group consisting essentially of silicon and a metal.
摘要:
A method of making a planar coil is disclosed in the present invention. First, a substrate having a trench is provided. Then, a barrier and a seed layer are formed on the substrate in sequence. An isolative layer is used for guiding a conductive material to flow into a lower portion of the trench such that accumulation of the conductive material at opening of the trench is prevented before the lower portion of the trench is completely filled up, thereby avoiding gap formation in the trench.
摘要:
A system and method for forming under bump metallization layers that reduces the overall footprint of UBMs, through silicon vias, and trace lines is disclosed. A preferred embodiment comprises forming an under bump metallization layer over a plurality of through silicon vias, whereas the UBM is connected to only a portion of the total number of through silicon vias over which it is located. The trace lines connected to the through silicon vias may additionally be formed beneath the UBM to save even more space on the surface of the die.
摘要:
A bump structure that may be used to interconnect one substrate to another substrate is provided. A recessed conductive pillar is formed on a first substrate such that the recessed conductive pillar has a recess formed therein. The recess may be filled with a solder material. A conductive pillar on a second substrate may be formed having a contact surface with a width less than or equal to a width of the recess. The first substrate may be attached to the second substrate such that the conductive pillar on the second substrate is positioned over or in the recess of the first substrate. The substrates may each be an integrated circuit die, an interposer, a printed circuit board, a high-density interconnect, or the like.
摘要:
A bump structure that may be used to interconnect one substrate to another substrate is provided. A conductive pillar is formed on a first substrate such that the conductive pillar has a width different than a contact surface on a second substrate. In an embodiment the conductive pillar of the first substrate has a trapezoidal shape or a shape having tapered sidewalls, thereby providing a conductive pillar having base portion wider than a tip portion. The substrates may each be an integrated circuit die, an interposer, a printed circuit board, a high-density interconnect, or the like.
摘要:
A semiconductor substrate having a through-silicon via with an air gap interposed between the through-silicon via and the semiconductor substrate is provided. An opening is formed partially through the semiconductor substrate. The opening is first lined with a liner and then the opening is filled with a conductive material. A backside of the semiconductor substrate is thinned to expose the liner, which is subsequently removed to form an air gap around the conductive material of the through-silicon via. A dielectric layer is formed of the backside of the semiconductor substrate to seal the air gap.
摘要:
A method of forming circuit patterns on a semiconductor wafer using two different image steppers having nonaligned optical image systems achieves optical alignment of multiple overlays with high accuracy. A first alignment mark is imaged by the first stepper onto a material layer deposited on the wafer, and a second alignment mark is imaged onto a subsequently deposited material layer using the second stepper. Alignment of the two marks, and thus of successively imaged, overlying circuit patterns, is achieved by translating the optical coordinates of the second alignment system into the those of the first alignment system, and then making corresponding two dimensional adjustment of the wafer position relative to the second stepper.