Abstract:
A transistor is disclosed that includes a semiconductor body having a first horizontal surface. A drift region is arranged in the semiconductor body. A plurality of gate electrodes is arranged in trenches of the semiconductor body. The trenches have a longitudinal direction and extending parallel relative to each other. The longitudinal direction of the trenches extends in a first lateral direction of the semiconductor body. The body regions and the source regions are arranged between the trenches. The body regions are arranged between the drift region and the source regions in a vertical direction of the semiconductor body. In the first horizontal surface, the source regions and the body regions are arranged alternately in the first lateral direction. A source electrode is electrically connected to the source regions and the body regions in the first horizontal surface.
Abstract:
A method for producing a rounded conductor line of a semiconductor component is disclosed. In that method, a partially completed semiconductor component is provided. The partially completed semiconductor component has a bottom side and a top side spaced distant from the bottom side in a vertical direction. Also provided is an etchant. On the top side, a dielectric layer is arranged. The dielectric layer has at least two different regions that show different etch rates when they are etched with the etchant. Subsequently, a trench is formed in the dielectric layer such that the trench intersects each of the different regions. Then, the trench is widened by etching the trench with the etchant at different etch rates. By filling the widened trench with an electrically conductive material, a conductor line is formed.
Abstract:
A semiconductor device arrangement includes a first semiconductor device having a load path, and a number of second transistors, each having a load path between a first and a second load terminal and a control terminal. The second transistors have their load paths connected in series and connected in series to the load path of the first transistor. Each of the second transistors has its control terminal connected to the load terminal of one of the other second transistors. One of the second transistors has its control terminal connected to one of the load terminals of the first semiconductor device.
Abstract:
A semiconductor device and manufacturing method is disclosed. One embodiment provides a common substrate of a first conductivity type and at least two wells of a second conductivity type. A buried high resistivity region and at least an insulating structure is provided insulating the first well from the second well. The insulating structure extends through the buried high resistivity region and includes a conductive plug in Ohmic contact with the first semiconductor region. A method for forming an integrated semiconductor device is also provided.
Abstract:
A semiconductor device and manufacturing method is disclosed. One embodiment provides a common substrate of a first conductivity type and at least two wells of a second conductivity type. A buried high resistivity region and at least an insulating structure is provided insulating the first well from the second well. The insulating structure extends through the buried high resistivity region and includes a conductive plug in Ohmic contact with the first semiconductor region. A method for forming an integrated semiconductor device is also provided.
Abstract:
An electronic device and method for production is disclosed. One embodiment provides an integrated component having a first layer which is composed of copper or a copper alloy or which contains copper or a copper alloy, and having an electrically conductive second layer, whose material differs from the material of the first layer, and a connection apparatus which is arranged on the first layer and on the second layer.
Abstract:
An apparatus and a method configured to lower thermal stress is disclosed. One embodiment provides a semiconductor chip, a lead frame and a layer structure. The layer structure includes at least a diffusion solder layer and a buffer layer. The layer structure is arranged between the semiconductor chip and the lead frame. The buffer layer includes a material, which is soft in comparison to a material of the diffusion solder layer, and includes a layer thickness such that thermal stresses in the semiconductor chip remain below a predetermined value during temperature fluctuations within a temperature range.
Abstract:
Emitter and collector regions of the bipolar transistor are formed by doped regions of the same type of conductivity, which are separated by doped semiconductor material of an opposite type of conductivity, the separate doped regions being arranged at a surface of a semiconductor body and being in electric contact with electrically conductive material that is introduced into trenches at the surface of the semiconductor body.
Abstract:
An electrical connection arrangement between a semiconductor circuit arrangement and an external contact device, and to a method for producing the connection arrangement is disclosed. In one embodiment, a metallic layer is deposited onto at least one contact terminal and/or the contacts and the wire, the metallic layer protecting the contact terminal or the electrical connection against ambient influences and ensuring a high reliability.
Abstract:
A power semiconductor IC device is disclosed. In one embodiment, the device includes a substrate, and a layer structure formed on the substrate. The layer structure includes a metallization layer including copper, wherein the metallization layer is formed as a stack structure including at least two copper layers and a stabilization layer between the two copper layers.