Abstract:
Methods and apparatus for processing using a remote plasma source are disclosed. The apparatus includes an outer chamber, a remote plasma source, and a showerhead. Inert gas ports within the showerhead assembly can be used to alter the concentration and energy of reactive radical or reactive neutral species generated by the remote plasma source in different regions of the showerhead. This allows the showerhead to be used to apply a surface treatment to different regions of the surface of a substrate. Varying parameters such as the remote plasma parameters, the inert gas flows, pressure, and the like allow different regions of the substrate to be treated in a combinatorial manner.
Abstract:
Embodiments provided herein describe methods and systems for processing substrates. A plasma including radical species and charged species is generated. The charged species of the plasma are collected. A substrate is exposed to the radical species of the plasma. A layer is formed on the substrate after exposing the substrate to the radical species.
Abstract:
Methods and apparatus for processing using a remote plasma source are disclosed. The apparatus includes an outer chamber enclosing a substrate support, a remote plasma source, and a showerhead. A substrate heater can be mounted in the substrate support. A transport system moves the substrate support and is capable of positioning the substrate. The remote plasma source may be used to provide a plasma surface treatment or as a source to incorporate dopants into a pre-deposited layer.
Abstract:
An apparatus for sputtering wherein magnets within the magnetron of a sputtering source are positioned such that Ar+ ions arriving at the surface of a multi-piece target do not strike the target perpendicular to the surface at the gaps between the sectors of the target. The off-angle bombardment of the Ar+ ions ensures that the Ar+ ions do not result in the sputtering and deposition of target backing material through the gap between the target sectors.
Abstract translation:一种用于溅射的设备,其中溅射源的磁控管内的磁体被定位成使得到达多件式靶的表面的Ar +离子在目标的扇区之间的间隙处不垂直于表面撞击靶。 Ar +离子的偏角轰击确保Ar +离子不会导致目标背衬材料通过目标部分之间的间隙的溅射和沉积。
Abstract:
Measuring current-voltage (I-V) characteristics of a solar cell using a lamp that emits light, a substrate that includes a plurality of solar cells, a positive electrode attached to the solar cells, and a negative electrode peripherally deposited around each of the solar cells and connected to a common ground, an articulation platform coupled to the substrate, a multi-probe switching matrix or a Z-stage device, a programmable switch box coupled to the multi-probe switching matrix or Z-stage device and selectively articulating the probes by raising the probes until in contact with at least one of the positive electrode and the negative electrode and lowering the probes until contact is lost with at least one of the positive electrode and the negative electrode, a source meter coupled to the programmable switch box and measuring the I-V characteristics of the substrate.
Abstract:
Nonvolatile memory elements are provided that have resistive switching metal oxides. The nonvolatile memory elements may be formed by depositing a metal-containing material on a silicon-containing material. The metal-containing material may be oxidized to form a resistive-switching metal oxide. The silicon in the silicon-containing material reacts with the metal in the metal-containing material when heat is applied. This forms a metal silicide lower electrode for the nonvolatile memory element. An upper electrode may be deposited on top of the metal oxide. Because the silicon in the silicon-containing layer reacts with some of the metal in the metal-containing layer, the resistive-switching metal oxide that is formed is metal deficient when compared to a stoichiometric metal oxide formed from the same metal.
Abstract:
Methods and apparatus for processing using a remote plasma source are disclosed. The apparatus includes an outer chamber enclosing a substrate support, a remote plasma source, and a showerhead. A substrate heater can be mounted in the substrate support. A transport system moves the substrate support and is capable of positioning the substrate. The remote plasma source may be used to provide a plasma surface treatment or as a source to incorporate dopants into a pre-deposited layer.
Abstract:
Combinatorial processing of a substrate comprising site-isolated sputter deposition and site-isolated plasma processing can be performed in a same process chamber. The process chamber, configured to perform sputter deposition and plasma processing, comprises a grounded shield having at least an aperture disposed above the substrate to form a small, dark space gap to reduce or eliminate any plasma formation within the gap. The plasma processing may include plasma etching or plasma surface treatment.
Abstract:
Resistive switching memory elements are provided that may contain electroless metal electrodes and metal oxides formed from electroless metal. The resistive switching memory elements may exhibit bistability and may be used in high-density multi-layer memory integrated circuits. Electroless conductive materials such as nickel-based materials may be selectively deposited on a conductor on a silicon wafer or other suitable substrate. The electroless conductive materials can be oxidized to form a metal oxide for a resistive switching memory element. Multiple layers of conductive materials can be deposited each of which has a different oxidation rate. The differential oxidization rates of the conductive layers can be exploited to ensure that metal oxide layers of desired thicknesses are formed during fabrication.
Abstract:
According to various embodiments of the disclosure, an apparatus and method for enhanced deposition and etch techniques is described, including a pedestal, the pedestal having at least two electrodes embedded in the pedestal, a showerhead above the pedestal, a plasma gas source connected to the showerhead, wherein the showerhead is configured to deliver plasma gas to a processing region between the showerhead and the substrate and a power source operably connected to the showerhead and the at least two electrodes with plasma being substantially contained in an area which corresponds with one electrode of the at least two electrodes.