Abstract:
A bottom package substrate is provided that includes a plurality of metal posts that electrically couple through a die-side redistribution layer to a plurality of die interconnects. The metal posts and the die interconnects are plated onto a seed layer on the bottom package substrate.
Abstract:
Some features pertain to an integrated device that include a first integrated circuit (IC) package comprising a first laminated substrate, a flexible connector coupled to the first laminated substrate, and a second integrated circuit (IC) package comprising a second laminated substrate. The second laminated substrate is coupled to the flexible connector. The flexible connector includes a dielectric layer and an interconnect. The dielectric layer and the interconnect substantially extend into the first laminated substrate and the second laminated substrate. In some implementations, the dielectric layer and the interconnect of the flexible connector, contiguously extend into the first laminated substrate and the second laminated substrate. In some implementations, the dielectric layer extends into a substantial portion of the first laminated substrate. In some implementations, the dielectric layer includes polyimide (PI) layer.
Abstract:
An integrated circuit (IC) package includes a die, a package substrate coupled to the die, and a first electrostatic discharge (ESD) protection component coupled to the package substrate, where the first electrostatic discharge (ESD) protection component is configured to provide package level electrostatic discharge (ESD) protection. In some implementations, the first electrostatic discharge (ESD) protection component is embedded in the package substrate. In some implementations, the die includes an internal electrostatic discharge (ESD) protection component configured to provide die level electrostatic discharge (ESD) protection. In some implementations, the internal electrostatic discharge (ESD) protection component and the first electrostatic discharge (ESD) protection component are configured to provide cumulative electrostatic discharge (ESD) protection for the die.
Abstract:
Some novel features pertain to an integrated device (e.g., integrated package) that includes a base portion for the integrated device, a first die (e.g., first wafer level die), and a second die (e.g., second wafer level die). The base portion includes a first inorganic dielectric layer, a first set of interconnects located in the first inorganic dielectric layer, a second dielectric layer different from the first inorganic dielectric layer, and a set of redistribution metal layers in the second dielectric layer. The first die is coupled to a first surface of the base portion. The second die is coupled to the first surface of the base portion, the second die is electrically coupled to the first die through the first set of interconnects.
Abstract:
Apparatus and methods are described herein for emulating the hot spot distribution of a functional test by applying vectors for structural test to an integrated circuit (IC). The affects of the hot spots can then be tested and characterized. The vectors may be generated on the IC, or may be fed to the IC via an external source.
Abstract:
A substrate block is provided that has an increased width. The substrate block comprises two substrate bars, and the substrate bars each comprise a substrate and a plurality of filled vias through the substrate. The substrate block may be used to manufacture package substrates, and these package substrate may be incorporated into a PoP structure. The package substrate includes a carrier having a plurality of vertical interconnections and a bar coupled to the vertical interconnections.
Abstract:
Some implementations provide an interposer that includes a substrate, a via in the substrate, and an oxidation layer. The via includes a metal material. The oxidation layer is between the via and the substrate. In some implementations, the substrate is a silicon substrate. In some implementations, the oxidation layer is a thermal oxide formed by exposing the substrate to heat. In some implementations, the oxidation layer is configured to provide electrical insulation between the via and the substrate. In some implementations, the interposer also includes an insulation layer. In some implementations, the insulation layer is a polymer layer. In some implementations, the interposer also includes at least one interconnect on the surface of the interposer. The at least one interconnect is positioned on the surface of the interposer such that the oxidation layer is between the interconnect and the substrate.
Abstract:
A voltage-switchable dielectric layer may be employed on a die for electrostatic discharge (ESD) protection. The voltage-switchable dielectric layer functions as a dielectric layer between terminals of the die during normal operation of the die. When ESD events occur at the terminals of the die, a high voltage between the terminals switches the voltage-switchable dielectric layer into a conducting layer to allow current to discharge to a ground terminal of the die without the current passing through circuitry of the die. Thus, damage to the circuitry of the die is reduced or prevented during ESD events on dies with the voltage-switchable dielectric layer. The voltage-switchable dielectric layer may be deposited on the back side of a die for protection during stacking with a second die to form a stacked IC. A method includes depositing a voltage-switchable dielectric layer on a first die between a first terminal and a second terminal.