Abstract:
A method of packaging includes placing a package component over a release film, wherein solder balls on a surface of the package component are in physical contact with the release film. Next, A molding compound filled between the release film and the package component is cured, wherein during the step of curing, the solder balls remain in physical contact with the release film.
Abstract:
A method of manufacturing a light emitting diode (LED) package includes disposing at least one LED chip on a first surface of a lead frame, and the LED chip is connected to the lead frame. At least one heat dissipation area corresponding to the LED chip is defined on a second surface of the lead frame. A thermal conductive material is disposed in the heat dissipation area. The thermal conductive material directly comes into contact with the lead frame. A solidification process is performed to solidify the thermal conductive material and form a plurality of heat dissipation blocks. The heat dissipation blocks directly come into contact with the lead frame, and the solidification process is performed at a temperature substantially lower than 300° C.
Abstract:
A semiconductor package structure comprises a substrate, a die bonded to the substrate, and one or more stud bump structures connecting the die to the substrate, wherein each of the stud bump structures having a stud bump and a solder ball encapsulating the stud bump to enhance thermal dissipation and reduce high stress concentrations in the semiconductor package structure.
Abstract:
A structure comprises a post passivation interconnect layer formed over a semiconductor substrate, a metal bump formed over the post passivation interconnect layer and a molding compound layer formed over the semiconductor substrate. A lower portion of the metal bump is embedded in the molding compound layer and a middle portion of the metal bump is surrounded by a concave meniscus molding compound protection layer.
Abstract:
A method includes placing a first package component over a vacuum boat, wherein the vacuum boat comprises a hole, and wherein the first package component covers the hole. A second package component is placed over the first package component, wherein solder regions are disposed between the first and the second package components. The hole is vacuumed, wherein the first package component is pressed by a pressure against the vacuum boat, and wherein the pressure is generated by a vacuum in the hole. When the vacuum in the hole is maintained, the solder regions are reflowed to bond the second package component to the first package component.
Abstract:
A method of packaging includes placing a package component over a release film, wherein solder balls on a surface of the package component are in physical contact with the release film. Next, A molding compound filled between the release film and the package component is cured, wherein during the step of curing, the solder balls remain in physical contact with the release film.
Abstract:
A method includes forming a passivation layer over a metal pad, which is overlying a semiconductor substrate. A first opening is formed in the passivation layer, with a portion of the metal pad exposed through the first opening. A seed layer is formed over the passivation layer and to electrically coupled to the metal pad. The seed layer further includes a portion over the passivation layer. A first mask is formed over the seed layer, wherein the first mask has a second opening directly over at least a portion of the metal pad. A PPI is formed over the seed layer and in the second opening. A second mask is formed over the first mask, with a third opening formed in the second mask. A portion of a metal bump is formed in the third opening. After the step of forming the portion of the metal bump, the first and the second masks are removed.
Abstract:
A fine pitch package-on-package (PoP), and a method of forming, are provided. The PoP may be formed by placing connections, e.g., solder balls, on a first substrate having a semiconductor die attached thereto. A first reflow process is performed to elongate the solder balls. Thereafter, a second substrate having another semiconductor die attached thereto is connected to the solder balls. A second reflow process is performed to form an hourglass connection.
Abstract:
A fine pitch package-on-package (PoP), and a method of forming, are provided. The PoP may be formed by placing connections, e.g., solder balls, on a first substrate having a semiconductor die attached thereto. A first reflow process is performed to elongate the solder balls. Thereafter, a second substrate having another semiconductor die attached thereto is connected to the solder balls. A second reflow process is performed to form an hourglass connection.
Abstract:
A system and method for forming metal bumps is provided. An embodiment comprises attaching conductive material to a carrier medium and then contacting the conductive material to conductive regions of a substrate. Portions of the conductive material are then bonded to the conductive regions using a bonding process to form conductive caps on the conductive regions, and residual conductive material and the carrier medium are removed. A reflow process is used to reflow the conductive caps into conductive bumps.