摘要:
A fluxless bonding process is provided. An array of micro solder bumps of a first semiconductor structure is aligned to an array of bonding pads of a second semiconductor structure under an applied bonding force. An environment is provided to prevent oxides from forming on the solder bump structures and bonding pads during the bonding process. A scrubbing process is performed at a given scrubbing frequency and amplitude to scrub the micro solder bumps against the bonding pads in a direction perpendicular to the bonding. Heat is applied to at least the first semiconductor structure to melt and bond the micro solder bumps to the bonding pads. The first semiconductor structure is cooled down to solidify the molten solder. Coplanarity is maintained between the bonding surfaces of the semiconductor structures within a given tolerance during the scrubbing and cooling steps until solidification of the micro solder bumps.
摘要:
A 3D interconnect structure and method of manufacture are described in which metal redistribution layers (RDLs) are integrated with through-silicon vias (TSVs) and using a “plate through resist” type process flow. A silicon nitride or silicon carbide passivation layer may be provided between the thinned device wafer back side and the RDLs to provide a hermetic barrier and polish stop layer during the process flow.
摘要:
A method and apparatus for a reinforced package are provided. A package component may be electrically coupled to a device through a plurality of electrical connections. A molding underfill may be interposed between the package component and the device and may encapsulate the plurality of electrical connections or a subset of the plurality of electrical connections between the package component and the device. The package component may also include a molding compound. The plurality of the electrical connections may extend through the molding compound with the molding underfill interposed between the molding compound and the device to encapsulate the plurality of electrical connections or a subset of the plurality of electrical connections between the package component and the device. The molding underfill may extend up one or more sides of the package component.
摘要:
A method and apparatus for a reinforced package are provided. A package component may be electrically coupled to a device through a plurality of electrical connections. A molding underfill may be interposed between the package component and the device and may encapsulate the plurality of electrical connections or a subset of the plurality of electrical connections between the package component and the device. The package component may also include a molding compound. The plurality of the electrical connections may extend through the molding compound with the molding underfill interposed between the molding compound and the device to encapsulate the plurality of electrical connections or a subset of the plurality of electrical connections between the package component and the device. The molding underfill may extend up one or more sides of the package component.
摘要:
An apparatus relating generally to a substrate is disclosed. In this apparatus, a first metal layer is on the substrate. The first metal layer has an opening. The opening of the first metal layer has a bottom and one or more sides extending from the bottom. A second metal layer is on the first metal layer. The first metal layer and the second metal layer provide a bowl-shaped structure. An inner surface of the bowl-shaped structure is defined responsive to the opening of the first metal layer and the second metal layer thereon. The opening of the bowl-shaped structure is configured to receive and at least partially retain a bonding material during a reflow process.
摘要:
A structure comprises a post passivation interconnect layer formed over a semiconductor substrate, a metal bump formed over the post passivation interconnect layer and a molding compound layer formed over the semiconductor substrate. A lower portion of the metal bump is embedded in the molding compound layer and a middle portion of the metal bump is surrounded by a concave meniscus molding compound protection layer.
摘要:
A semiconductor device utilizing die edge contacts is provided. An integrated circuit die has a post-passivation layer with a trench filled with a conductive material extending from a contact to a die edge, thereby forming a die edge contact. Optionally, a through substrate via may be positioned along the die edge such that the conductive material in the trench is electrically coupled to the through-substrate via, thereby forming a larger die edge contact. The integrated circuit die may be placed in a multi-die package wherein the multi-die package includes walls having a major surface perpendicular to a major surface of the integrated circuit die. The die edge contacts are electrically coupled to contacts on the walls of the multi-die package. The multi-die package may include edge contacts for connecting to another substrate, such as a printed circuit board, a packaging substrate, a high-density interconnect, or the like.
摘要:
A power semiconductor chip having: a semiconductor component body; a multilayer metallization arranged on the semiconductor component body; and a nickel layer arranged over the semiconductor component body. The invention further relates to a method for producing a power semiconductor chip and to a power semiconductor device. The invention provides a power semiconductor chip which has a metallization to which a copper wire, provided without a thick metallic coating, can be reliably bonded without damage to the power semiconductor chip during bonding.
摘要:
A fluxless bonding process is provided. An array of micro solder bumps of a first semiconductor structure is aligned to an array of bonding pads of a second semiconductor structure under an applied bonding force. An environment is provided to prevent oxides from forming on the solder bump structures and bonding pads during the bonding process. A scrubbing process is performed at a given scrubbing frequency and amplitude to scrub the micro solder bumps against the bonding pads in a direction perpendicular to the bonding. Heat is applied to at least the first semiconductor structure to melt and bond the micro solder bumps to the bonding pads. The first semiconductor structure is cooled down to solidify the molten solder. Coplanarity is maintained between the bonding surfaces of the semiconductor structures within a given tolerance during the scrubbing and cooling steps until solidification of the micro solder bumps.
摘要:
A 3D interconnect structure and method of manufacture are described in which metal redistribution layers (RDLs) are integrated with through-silicon vias (TSVs) and using a “plate through resist” type process flow. A silicon nitride or silicon carbide passivation layer may be provided between the thinned device wafer back side and the RDLs to provide a hermetic barrier and polish stop layer during the process flow.