Abstract:
Techniques are disclosed to allow for a switched capacitor digital power amplifier (PA) that operates using high supply voltage levels beyond twice the maximum voltage rating for any of the transistor terminals such as Vds/Vdg/Vsg.
Abstract:
For example, an apparatus may include a digitally-controlled frequency multiplier, which may be controllable according to a digital control input, to generate an output frequency signal having an output frequency, for example, by multiplying an input frequency of an input frequency signal. For example, the digitally-controlled frequency multiplier may include a phase generator configured to generate a plurality of phase-shifted signal groups corresponding to a respective plurality of first phase-shifts applied to the input frequency signal, a plurality of digital clock multipliers controllable according to the digital control input to generate a respective plurality of frequency-multiplied signals based on the plurality of phase-shifted signal groups, and a combiner to generate the output frequency signal based on a combination of the plurality of frequency-multiplied signals.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Embodiments include a resistor, coupled on a signal path, that includes one or more resistive memory elements, such as one or more magnetic tunnel junctions (MTJs). The resistance of the resistive memory elements may be digitally trimmable to adjust a resistance of the resistor on the signal path. The resistor may be incorporated into an analog or mixed signal circuit to pass an analog signal on the signal path. Other embodiments may be described and claimed.
Abstract:
A system for assigning a characterization and calibrating a parameter is disclosed. The system includes a frequency measurement circuit and a finite state machine. The frequency measurement circuit is configured to measure frequencies of an oscillatory signal and to generate a measurement signal including measured frequencies. The finite state machine is configured to control measurements by the frequency measurement circuit, to assign a characterization to a parameter based on the measurement signal, and to generate a calibration signal based on the characterized parameter.
Abstract:
A system for assigning a characterization and calibrating a parameter is disclosed. The system includes a frequency measurement circuit and a finite state machine. The frequency measurement circuit is configured to measure frequencies of an oscillatory signal and to generate a measurement signal including measured frequencies. The finite state machine is configured to control measurements by the frequency measurement circuit, to assign a characterization to a parameter based on the measurement signal, and to generate a calibration signal based on the characterized parameter.
Abstract:
Embodiments include a resistor, coupled on a signal path, that includes one or more resistive memory elements, such as one or more magnetic tunnel junctions (MTJs). The resistance of the resistive memory elements may be digitally trimmable to adjust a resistance of the resistor on the signal path. The resistor may be incorporated into an analog or mixed signal circuit to pass an analog signal on the signal path. Other embodiments may be described and claimed.
Abstract:
Determination of digital compensation to compensate for non-linearity of stochastic system configured to sample a phase difference, based on statistical analysis of calibration data generated by the stochastic system in response to a linear phase ramp. The stochastic system may include a set of stochastic sampler circuits to sample a phase difference at periodic events, and calibration data may include a digital value of set of stochastic samples for each of multiple events. The calibration data may include sequences of the digital values in which the digital values increment over a range of the stochastic system (i.e., between saturation states of the stochastic system). Statistical analysis may include histogram analysis to estimate the probability distribution of the calibration data. The stochastic system may be configured as part of a time-to-digital converter, which may be configured within a feedback loop of a digitally controllable phase lock loop.
Abstract:
This application discusses, among other things, calibration systems for ameliorating nonlinearity of a digital-to-time converter (DTC). In an example, a calibration system can include a calibration path configured to represent a segment of the DTC, a time-to-digital circuit configured to receive an output of the calibration path and the processed frequency information and to provide timing error information of the segment, and a calibration engine configured to receive controller modulation information from a main controller, to provide calibration modulation information to the DTC, to receive the timing error information, and to provide compensation information to a correction circuit coupled to the DTC using the timing error information.
Abstract:
Techniques are described related to digital radio control and operation. The various techniques described herein enable high-frequency local oscillator (LO) signal generation using injection locked cock multipliers (ILCMs). The techniques also include the use of LO signals for carrier aggregation applications for phased array front ends. Furthermore, the disclosed techniques include the use of array element-level control using per-chain DC-DC converters. Still further, the disclosed techniques include the use of adaptive spatial filtering and optimal combining of analog-to-digital converters (ADCs) to maximize dynamic range in digital beamforming systems.