Abstract:
A method and apparatus is provided for forming an electronic assembly whereby an insulating polymer matrix having a plurality of conductor holes is attached to a first substrate wherein the conductor holes align with a corresponding contact array on the first substrate. Subsequently, a flexible, electrically conductive adhesive is provided within the plurality of conductor holes and a solid conductive material, preferably having a high melting temperature, is attached to at least one end thereof. The insulating polymer matrix with the electrically conductive adhesive and the solid conductive material is then cured at a temperature sufficient to completely cure the matrix to completely surround the electrically conductive adhesive, as well as permanently attaching the matrix and conductive adhesive to the first substrate and permanently attaching the solid conductive material to the conductive adhesive. A second substrate may then be attached to the conductive matrix structure secured to the first substrate by providing a low melting temperature attachment means to the solid conductive material attached to the matrix and subsequently reflowing the assembly to form an electronic assembly adapted with the capability of reworkability.
Abstract:
A process and apparatus for removing flip chips with C4 joints mounted on a multi-chip module by applying a tensile force to one or more removal member bonded to the back of one or more flip chips during heating of the module to a temperature sufficient to cause the C4 joints to become molten. The tensile force can either be a compressed spring, or a bi-metallic member which is flat at room temperature and becomes curved when heated to such temperature, or a memory alloy whose original shape is curved and which is bent flat at room temperature but returns to its original curved shape when heated to such temperature. An adhesive is used to bond the removal member to the chip to be removed and is a low temperature, fast curing adhesive with high temperature tolerance after curing.
Abstract:
An electrical connector arrangement for connecting electronic devices to one another. The connector arrangement uses tensile members and compression members, at least the tensile members of which act to provide both an electrical connection between electronic devices and force over a range of distances to hold the devices together. The tensile members provides tensile force acting to hold the electronic devices together while the compression members provide an opposing compressive force over a range of distances which balances the tensile force to thereby form a cellforce connector used to connect an array of electrical contact points on one electronic device to a corresponding array of electrical contact points on another electronic device.
Abstract:
This invention relates to a solder structure which provides enhanced fatigue life properties when used to bond substrates particularly at the second level such as BGA and CGA interconnections. The solder structure is preferably a sphere or column and has a metal layer wettable by solder and the structure is used to make solder connections in electronic components such as joining an electronic module such as a chip connected to a MLC which module is connected to a circuit board. The solder structure preferably has an overcoat of solder on the metal layer to provide a passivation coating to the metal layer to keep it clean from oxidation and corrosion and also provide a wettable surface for attachment of the solder structure to solder on the pads of the substrate being bonded.
Abstract:
The present invention relates generally to apparatus and methods for making simultaneous electrical connections, and more particularly to making these electrical connections simultaneously using a new bond tip configuration. Various methods and processes are being disclosed to simultaneously make electrical connections between electrical conductor lines or pads. The electrical connection is made by placing an electrically conductive wire across a pair of electrical lines or pads that have to be electrically connected and then by using a special tip, both ends of the electrically conductive wire are simultaneously secured to the two electrically conductive lines or pads.
Abstract:
A solder ball contact and a method of making a solder ball contact includes: a first insulating layer with a via formed on an integrated circuit (IC) chip and a metal pad; an under bump metallurgy (UBM) structure disposed within the via and on a portion of the first insulating layer, surrounding the via; a second insulating layer formed on an upper surface of an outer portion of the UBM structure that is centered on the via; and a solder ball that fills the via and is disposed above an upper surface of an inner portion of the UBM structure that contacts the via, in which the UBM structure that underlies the solder ball is of a greater diameter than the solder ball.
Abstract:
A process and structure for forming an optical subassembly in an integrated circuit, comprising: defining electrically conducting lines and bonding pads in a metallization layer on a substrate; depositing a passivation layer over the metallization layer; etching the passivation layer to remove the passivation layer from each of the bonding pads and a portion of the metallization layer associated with each of the bonding pads; diffusing Cr from the lines proximate said bonding pads to prevent solder wetting down lines; bonding an optical device to one of the bonding pads; and attaching the substrate to a carrier utilizing solder bond attachment.
Abstract:
Electronic packages incorporating EMI shielding, and particularly semiconductor devices which incorporate semiconductor chip-carrier structures having grounded bands embedded therein which are adapted to reduce outgoing and incident EMI emissions for high-speed switching electronic packages.
Abstract:
The present invention relates generally to a new semiconductor chip carrier connections, where the chip carrier and the second level assembly are made by a surface mount technology. More particularly, the invention encompasses surface mount technologies, such as, Ball Grid Array (BGA), Column Grid Array (CGA), to name a few, where the surface mount technology comprises essentially of a non-solder metallic connection, such as, a copper connection. The present invention is also related to Column Grid Array structures and process thereof.
Abstract:
An interconnection structure and methods for making and detaching the same are presented for column and ball grid array (CGA and BGA) structures by using a transient solder paste on the electronic module side of the interconnection that includes fine metal powder additives to increase the melting point of the solder bond. The metal powder additives change the composition of the solder bond such that the transient melting solder composition does not completely melt at temperatures below +230° C. and detach from the electronic module during subsequent reflows. A Pb—Sn eutectic with a lower melting point is used on the opposite end of the interconnection structure. In the first method a transient melting solder paste is applied to the I/O pad of an electronic module by a screening mask. Interconnect structures are then bonded to the I/O pad. In a second method, solder preforms in a composition of the transient melting solder paste are wetted onto electronic module I/O pads and interconnect columns or balls are then bonded. Detachment of an electronic module from a circuit card can then be performed by heating the circuit card assembly to a temperature above the eutectic solder melting point, but below the transient solder joint melting point.