Abstract:
A main power source supplies current through path impedance to a power terminal of an integrated circuit device under test (DUT). The DUT's demand for current at the power input terminal temporarily increases following edges of a clock signal applied to the DUT during a test as transistors within the IC switch in response to the clock signal edges. To limit variation (noise) in voltage at the power input terminal, an auxiliary power supply supplies an additional current pulse to the power input terminal to meet the increased demand during each cycle of the clock signal. The magnitude of the current pulse is a function of a predicted increase in current demand during that clock cycle, and of the magnitude of an adaption signal controlled by a feedback circuit provided to limit variation in voltage developed at the DUT's power input terminal.
Abstract:
One embodiment of the present invention concerns an integrated circuit that includes bond pads and special contact pads or points. The bond pads are for interfacing the integrated circuit as a whole with an external circuit, and are to be bonded to a package or circuit board. The bond pads are disposed on the die in a predetermined alignment such as a peripheral, grid, or lead-on-center alignment. The special contact pads are used to provide external test patterns to internal circuits and/or to externally monitor results from testing the internal circuits. The special contact pads may be advantageously located on the integrated circuit with a high degree of positional freedom. For one embodiment, the special contact pads may be disposed on the die at a location that is not in the same alignment as the bond pads. The special contact pads may be smaller than the bond pads so as not to increase the die size due to the special contact pads. The special contact points may also be used to externally program internal circuits (e.g., nonvolatile circuits) at the die or package level. The special contact points may also be used to select redundant circuits for faulty circuits.
Abstract:
The present invention discloses a method and system compensating for thermally induced motion of probe cards used in testing die on a wafer. A probe card incorporating temperature control devices to maintain a uniform temperature throughout the thickness of the probe card is disclosed. A probe card incorporating bi-material stiffening elements which respond to changes in temperature in such a way as to counteract thermally induced motion of the probe card is disclosed including rolling elements, slots and lubrication. Various means for allowing radial expansion of a probe card to prevent thermally induced motion of the probe card are also disclosed. A method for detecting thermally induced movement of the probe card and moving the wafer to compensate is also disclosed.
Abstract:
A method of designing and manufacturing a probe card assembly includes prefabricating one or more elements of the probe card assembly to one or more predefined designs. Thereafter, design data regarding a newly designed semiconductor device is received along with data describing the tester and testing algorithms to be used to test the semiconductor device. Using the received data, one or more of the prefabricated elements is selected. Again using the received data, one or more of the selected prefabricated elements is customized. The probe card assembly is then built using the selected and customized elements.
Abstract:
Contact tip structures are fabricated on sacrificial substrates for subsequent joining to interconnection elements including composite interconnection elements, monolithic interconnection elements, tungsten needles of probe cards, contact bumps of membrane probes, and the like. The spatial relationship between the tip structures can lithographically be defined to very close tolerances. The metallurgy of the tip structures is independent of that of the interconnection element to which they are attached, by brazing, plating or the like. The contact tip structures are readily provided with topological (small, precise, projecting, non-planar) contact features, such as in the form of truncated pyramids, to optimize electrical pressure connections subsequently being made to terminals of electronic components. Elongate contact tip structures, adapted in use to function as spring contact elements without the necessity of being joined to resilient contact elements are described. Generally, the invention is directed to making (pre-fabricating) relatively ‘perfect’ contact tip structures (“tips”) and joining them to relatively ‘imperfect’ interconnection elements to improve the overall capabilities of resulting “tipped” interconnection elements.
Abstract:
A robust mechanical structure is provided to prevent small foundation structures formed on a substrate from detaching from the substrate surface. The strengthened structure is formed by plating a foundation metal layer on a seed layer and then embedding the plated foundation structure in an adhesive polymer material, such as epoxy. Components, such as spring probes, can then be constructed on the plated foundation. The adhesive polymer material better assures the adhesion of the metal foundation structure to the substrate surface by counteracting forces applied to an element, such as a spring probe, attached to the plated foundation.
Abstract:
A wafer test assembly includes multiple probe head substrates arranged like tiles with connectors attached to one side and probes supported on the opposing side. In one embodiment, flexible cable connectors directly connect the connectors on the probe head tile to a test head, while in another embodiment the flexible cables connect the probe head tile to a PCB providing horizontal routing to test head connectors. In one embodiment, leveling pins provide a simplified support structure connecting to a retaining element attached to the tiles to provide for applying a push-pull leveling force. A test head connector interface frame enables rearrangement of connectors between the test head and the probe card to provide for both full wafer contact or partial wafer contact. The test head connectors are rearranged by being slidable on rails, or pluggable and unpluggable enabling movement over a range of positions.
Abstract:
Contact structures exhibiting resilience or compliance for a variety of electronic components are formed by bonding a free end of a wire to a substrate, configuring the wire into a wire stem having a springable shape, severing the wire stem, and overcoating the wire stem with at least one layer of a material chosen primarily for its structural (resiliency, compliance) characteristics. A variety of techniques for configuring, severing, and overcoating the wire stem are disclosed. In an exemplary embodiment, a free end of a wire stem is bonded to a contact area on a substrate, the wire stem is configured to have a springable shape, the wire stem is severed to be free-standing by an electrical discharge, and the free-standing wire stem is overcoated by plating. A variety of materials for the wire stem (which serves as a falsework) and for the overcoat (which serves as a superstructure over the falsework) are disclosed. Various techniques are described for mounting the contact structures to a variety of electronic components (e.g., semiconductor wafers and dies, semiconductor packages, interposers, interconnect substrates, etc.), and various process sequences are described. The resilient contact structures described herein are ideal for making a “temporary” (probe) connections to an electronic component such as a semiconductor die, for burn-in and functional testing. The self-same resilient contact structures can be used for subsequent permanent mounting of the electronic component, such as by soldering to a printed circuit board (PCB). An irregular topography can be created on or imparted to the tip of the contact structure to enhance its ability to interconnect resiliently with another electronic component. Among the numerous advantages of the present invention is the great facility with which the tips of a plurality of contact structures can be made to be coplanar with one another. Other techniques and embodiments, such as wherein the falsework wirestem protrudes beyond an end of the superstructure, or is melted down, and wherein multiple free-standing resilient contact structures can be fabricated from loops, are described.
Abstract:
A probe card assembly can comprise a probe head assembly and a wiring substrate. The probe head assembly can comprise a plurality of probes disposed to contact an electronic device disposed on a holder in a test housing. The wiring substrate can include an electrical interface to a test controller and a plurality of electrical wiring composing electrical paths between the electrical interface and ones of the probes, and the wiring substrate can comprise a first portion on which the electrical interface is disposed and a second portion composing the probe head assembly. The second portion of the wiring substrate can be moveable with respect to the first portion of the wiring substrate.
Abstract:
Probes of a probe card assembly can be adjusted with respect to an element of the probe card assembly, which can be an element of the probe card assembly that facilitates mounting of the probe card assembly to a test apparatus. The probe card assembly can then be mounted in a test apparatus, and an orientation of the probe card assembly can be adjusted with respect to the test apparatus, such as a structural part of the test apparatus or a structural element attached to the test apparatus.