Abstract:
A microelectronic package (10) can include lower and upper package faces (11, 12), lower terminals (25) at the lower package face, upper terminals (45) at the upper package face, first and second microelectronic elements (30) each having memory storage array function, and conductive interconnects (15) each electrically connecting at least one lower terminal with at least one upper terminal. The conductive interconnects (15) can include first conductive interconnects (15a) configured to carry address in formation, signal assignments of a first set (70a) of the first interconnects having (180) rotational symmetry about a theoretical rotational axis (29) with signal assignments of a second set (70b) of first interconnects. The conductive interconnects (15) can also include second conductive interconnects (15b) configured to carry data information, the position of each second conductive interconnect having (180) rotational symmetry about the rotational axis (29) with a position of a corresponding no-connect conductive interconnect (15d).
Abstract:
A microelectronic package can include a substrate and a microelectronic element having a face and one or more columns of contacts thereon which face and are joined to corresponding contacts on a surface of the substrate. An axial plane may intersect the face along a line in the first direction and centered relative to the columns of element contacts. Columns of package terminals can extend in the first direction. First terminals in a central region of the second surface can be configured to carry address information usable to determine an addressable memory location within the microelectronic element. The central region may have a width not more than three and one-half times a minimum pitch between the columns of package terminals. The axial plane can intersect the central region.
Abstract:
A microelectronic assembly can include a microelectronic package connected with a circuit panel. The package has a microelectronic element having a front face facing away from a substrate of the package, and electrically connected with the substrate through conductive structure extending above the front face. First terminals provided in first and second parallel grids or in first and second individual columns can be configured to carry address information usable to determine an addressable memory location from among all the available addressable memory locations of the memory storage array. The first terminals in the first grid can have signal assignments which are a mirror image of the signal assignments of the first terminals in the second grid.
Abstract:
An apparatus relates generally to a microelectromechanical system component. In such an apparatus, the microelectromechanical system component has a lower surface, an upper surface, first side surfaces, and second side surfaces. Surface area of the first side surfaces is greater than surface area of the second side surfaces. The microelectromechanical system component has a plurality of wire bond wires attached to and extending away from a first side surface of the first side surfaces. The wire bond wires are self-supporting and cantilevered with respect to the first side surface of the first side surfaces.
Abstract:
A microelectronic assembly (300) or system (1500) includes at least one microelectronic package (100) having a microelectronic element (130) mounted face up above a first surface (108) of a substrate (102), one or more columns (138, 140) of contacts (132) extending in a first direction (142) along the microelectronic element front face. Columns (104A, 105B, 107A, 107B) of terminals (105 107) exposed at a second surface (110) of the substrate extend in the first direction. First terminals (105) exposed at surface (110) in a central region (112) thereof having width (152) not more than three and one-half times a minimum pitch (150) of the columns of terminals can be configured to carry address information usable to determine an addressable memory location. An axial plane of the microelectronic element can intersect the central region.
Abstract:
A chip package has multiple chips that may be arranged side-by-side or in a staggered, stair step arrangement. The contacts of the chips are connected to interconnect pads carried on the chips themselves or on a redistribution substrate. The interconnect pads desirably are arranged in a relatively narrow interconnect zone, such that the interconnect pads can be readily wire-bonded or otherwise connected to a package substrate.
Abstract:
A microelectronic package can include a substrate and a microelectronic element having a face and one or more columns of contacts thereon which face and are joined to corresponding contacts on a surface of the substrate. An axial plane may intersect the face along a line in the first direction and centered relative to the columns of element contacts. Columns of package terminals can extend in the first direction. First terminals in a central region of the second surface can be configured to carry address information usable to determine an addressable memory location within the microelectronic element. The central region may have a width not more than three and one-half times a minimum pitch between the columns of package terminals. The axial plane can intersect the central region.
Abstract:
A microelectronic package has a dielectric element with first and second parallel apertures. A first microelectronic element has contacts overlying the first aperture, and a second microelectronic element has contacts overlying the second aperture. The second microelectronic element can overlie a rear face of the first microelectronic element and the same surface of the dielectric element as the first microelectronic element. First terminals on a second surface of the dielectric element between said first and second apertures can be configured to carry all data signals for read and write access to memory locations within the first and second microelectronic elements.
Abstract:
A microelectronic package may include a substrate having first and second regions, a first surface and a second surface remote from the first surface; at least one microelectronic element overlying the first surface within the first region; electrically conductive elements at the first surface within the second region; a support structure having a third surface and a fourth surface remote from the third surface and overlying the first surface within the second region in which the third surface faces the first surface, second and third electrically conductive elements exposed respectively at the third and fourth surfaces and electrically connected to the conductive elements at the first surface in the first region; and wire bonds defining edge surfaces and having bases electrically connected through ones of the third conductive elements to respective ones of the second conductive elements and ends remote from the support structure and the bases.
Abstract:
A microelectronic package can include a support element having first and second surfaces and substrate contacts at the first or second surface, zeroth and first stacked microelectronic elements electrically coupled with the substrate contacts, and terminals at the second surface electrically coupled with the microelectronic elements. The second surface can have a southwest region encompassing entire lengths of south and west edges of the second surface and extending in orthogonal directions from the south and west edges one-third of each distance toward north and east edges of the second surface, respectively. The terminals can include first terminals at a southwest region of the second surface, the first terminals configured to carry address information usable by circuitry within the microelectronic package to determine an addressable memory location from among all the available addressable memory locations of the memory storage arrays of at least one of the zeroth or first microelectronic elements.