摘要:
The invention provides Group III nitride semiconductor crystals of a size appropriate for semiconductor devices and methods for manufacturing the same, Group III nitride semiconductor devices and methods for manufacturing the same, and light-emitting appliances. A method of manufacturing a Group III nitride semiconductor crystal includes a process of growing at least one Group III nitride semiconductor crystal substrate on a starting substrate, a process of growing at least one Group III nitride semiconductor crystal layer on the Group III nitride semiconductor crystal substrate, and a process of separating a Group III nitride semiconductor crystal, constituted by the Group III nitride semiconductor crystal substrate and the Group III nitride semiconductor crystal layer, from the starting substrate, and is characterized in that the Group III nitride semiconductor crystal is 10 μm or more but 600 μm or less in thickness, and is 0.2 mm or more but 50 mm or less in width.
摘要:
A measurement-facilitating method of measuring the breakdown voltage of a semiconductor epitaxial wafer, and a semiconductor epitaxial wafer whose breakdown voltage is superior are realized. In a method of measuring the breakdown voltage of a semiconductor epitaxial wafer having to do with the present invention, the breakdown voltage between contacts 12, 12 is measured only through the Schottky contacts, without need for ohmic contacts. Inasmuch as the manufacturing process of forming ohmic contacts is accordingly omitted, the semiconductor epitaxial wafer 10 may be readily used in a breakdown-voltage measurement test. The measurement of the wafer 10 breakdown voltage thus may be readily carried out. Likewise, because the inter-contact breakdown voltage V2 of a wafer 10 can be measured prior to manufacturing a working device from it, unsuitable wafers 10 can be excluded before they are cycled through the working-device fabrication process. Reduction in losses can accordingly be counted upon, in contrast to conventional measuring methods, by which inter-contact breakdown voltage V2 is measured following fabrication of the working devices.
摘要:
It is an object to improve the breakdown voltage characteristics of a vertical semiconductor device having an opening and including a channel formed of two-dimensional electron gas in the opening. A GaN-based stacked layer 15 includes n−-type GaN drift layer 4/p-type GaN barrier layer 6/n+-type GaN contact layer 7. An opening 28 extends from a top layer and reaches the n−-type GaN drift layer 4. The semiconductor device includes a regrown layer 27 located so as to cover a wall surface and a bottom portion of the opening, the regrown layer 27 including an electron drift layer 22 and an electron source layer 26, a source electrode S located around the opening, a gate electrode G located on the regrown layer in the opening, and a bottom insulating layer 37 located in the bottom portion of the opening.
摘要翻译:本发明的目的是提高具有开口的垂直半导体器件的击穿电压特性,并且在开口中包括由二维电子气形成的沟道。 GaN基叠层15包括n型GaN漂移层4 / p型GaN势垒层6 / n +型GaN接触层7.开口28从顶层延伸并到达n型GaN漂移 该半导体器件包括重新生长层27,其被覆盖以覆盖开口的壁表面和底部,再生长层27包括电子漂移层22和电子源层26,源电极S位于 开口,位于开口中的再生长层上的栅极电极G和位于开口底部的底部绝缘层37。
摘要:
It is an object to improve the breakdown voltage characteristics of a vertical semiconductor device having an opening and including a channel formed of two-dimensional electron gas in the opening. The vertical semiconductor device includes a GaN-based stacked layer 15 having an opening 28 and the GaN-based stacked layer 15 includes n-type GaN-based drift layer 4/p-type GaN-based barrier layer 6/n-type GaN-based contact layer 7. The vertical semiconductor device includes a regrown layer 27 located so as to cover the opening, the regrown layer 27 including an electron drift layer 22 and an electron supply layer 26, a source electrode S, and a gate electrode G located on the regrown layer. The gate electrode G covers a portion having a length corresponding to the thickness of the p-type GaN-based barrier layer and is terminated at a position on the wall surface, the position being away from the bottom portion of the opening.
摘要:
There are provided a high current semiconductor device that has low on-resistance, high mobility, and good pinch-off characteristics and in which a kink phenomenon is not easily caused even if a drain voltage is increased, and a method for producing the semiconductor device. The semiconductor device of the present invention includes a GaN-based layered body 15 having an opening 28, a regrown layer 27 including a channel, a gate electrode G, a source electrode S, and a drain electrode D. The regrown layer 27 includes an electron transit layer 22 and an electron supply layer 26. The GaN-based layered body includes a p-type GaN layer 6 whose end surface is covered by the regrown layer in the opening, and a p-side electrode 11 that is in ohmic contact with the p-type GaN layer is disposed.
摘要:
A semiconductor device includes a semiconductor layer (1) containing GaN and an electrode. The electrode includes an electrode main body (6), a connection-use electrode (8) containing Al and formed at a position farther from the semiconductor layer (1) than the electrode main body (6), and a barrier layer (7) formed between the electrode main body (6) and the connection-use electrode (8), the barrier layer (7) containing at least one selected from the group consisting of W, TiW, WN, TiN, Ta, and TaN. A surface roughness RMS of the barrier layer (7) is 3.0 nm or less.
摘要:
Provided is a III nitride semiconductor electronic device having a structure capable of reducing leakage current. A laminate 11 includes a substrate 13 and a III nitride semiconductor epitaxial film 15. The substrate 13 is made of a III nitride semiconductor having a carrier concentration of more than 1×1018 cm−3. The epitaxial structure 15 includes a III nitride semiconductor epitaxial film 17. A first face 13a of the substrate 13 is inclined at an angle θ of more than 5 degrees with respect to an axis Cx extending in a direction of the c-axis. A normal vector VN and a c-axis vector VC make the angle θ. The III nitride semiconductor epitaxial film 17 includes first, second and third regions 17a, 17b and 17c arranged in order in a direction of a normal to the first face 13a. A dislocation density of the third region 17c is smaller than that of the first region 17a. A dislocation density of the second region 17b is smaller than that of the substrate 13.
摘要:
Affords a Group III nitride semiconductor device having a structure that can improve the breakdown voltage. A Schottky diode (11) consists of a Group III nitride support substrate (13), a gallium nitride region (15), and a Schottky electrode (17). The Group III nitride support substrate (13) has electrical conductivity. The Schottky electrode (17) forms a Schottky junction on the gallium nitride region (15). The gallium nitride region (15) is fabricated on a principal face (13a) of the Group III nitride support substrate (13). The gallium nitride region (15) has a (10 12)-plane XRD full-width-at-half-maximum of 100 sec or less.
摘要:
A light emitting device includes a nitride semiconductor substrate with a resistivity of 0.5 Ω·cm or less, an n-type nitride semiconductor layer and a p-type nitride semiconductor layer placed more distantly from the nitride semiconductor substrate than the n-type nitride semiconductor layer at a first main surface side of the nitride semiconductor substrate, and a light emitting layer placed between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer, wherein one of the nitride semiconductor substrate and the p-type nitride semiconductor layer is mounted at the top side which emits light and the other is placed at the down side, and a single electrode is placed at the top side. Therefore, there is provided a light emitting device which has a simple configuration thereby making it easy to fabricate, can provide a high light emission efficiency for a long time period, and can be easily miniaturized.
摘要:
In a method of evaluating a semiconductor wafer to provide an index as to whether slip generation is likely or not, the in-plane temperature distribution of the wafer is varied at a prescribed temperature and the condition of the temperature distribution at which slip line generation occurs is detected. The temperature distribution is varied using plural concentric heaters and is measured using a radiation thermometer. The temperature distribution is correlated to thermal stress in the wafer. In this manner, a range of tolerable thermal stress is specified, at which a slip line will not be generated. Dependent on the applied temperature distribution and the determination of whether a slip line has been generated in connection with that temperature distribution, it is determined whether the periphery of the wafer has a tangential residual stress that is compressive or tensile. This is achieved by varying the temperature distribution to first have a higher temperature at the center of the wafer and then have a higher temperature at the periphery of the wafer, while observing the resulting slip line generation states.