Abstract:
THE DISCLOSED TECHNIQUE COMPRISES THE LAMINATION OF TWO OR MORE CIRCUIT BOARDS USING A CONTROLLED FLOW ADHESIVE LAYER; THE CONTROLLED FLOW ADHESIVE PERMITTING THROUGH HOLES TO REMAIN UNOBSTRUCTED AFTER LAMINATION. FINAL INTERCONNECTION IS MADE BY PLATING THROUGH THE HOLES, THEREBY PROVIDING THE REQUISITE INTERCONNECTIONS BETWEEN SURFACES.
Abstract:
A male connection component (120) for connection with a correspondingly configured female connection component (140) having a recess (144) extending into a main surface (170) of a female Substrate (142) of the female connection component (140), wherein the female connection component (140) comprises a plurality of electrically conductive female contacts (146) which are electrically decoupled from one another and are arranged at different height levels with regard to the main surface (170) of the female Substrate (142), the male connection component (120) comprising a male Substrate (102), a Protrusion (104) protruding from a main surface (160) of the male Substrate (102) and comprising a plurality of electrically conductive male contacts (106) which are electrically decoupled from one another and are arranged at different height levels with regard to the main surface (160) of the male Substrate (102), wherein the male connection component (120) is adapted for connection with the female connection component (140) so that upon connection, each of the plurality of electrically conductive male contacts (106) is brought in contact with one of the plurality of electrically conductive female contacts (146) for providing electric contactation at different height levels, wherein the male Substrate (102) forms at least part of one of a chip, a chip package and a circuit board.
Abstract:
A composite interconnect assembly includes a body structure formed from a composite material (e.g., a carbon graphite material) with one or more conductive traces embedded therein (e.g., a copper or copper alloy). One or more contact regions are provided such that the conductive traces are exposed and are configured to mechanically and electrically connect to one or more electronic components. The body structure may have a variety of shapes, including planar, cylindrical, conical, and the like.
Abstract:
A composite interconnect assembly includes a body structure formed from a composite material (e.g., a carbon graphite material) with one or more conductive traces embedded therein (e.g., a copper or copper alloy). One or more contact regions are provided such that the conductive traces are exposed and are configured to mechanically and electrically connect to one or more electronic components. The body structure may have a variety of shapes, including planar, cylindrical, conical, and the like.
Abstract:
A capacitor having a stem that is designed to be inserted into a single, large-diameter via hole drilled in a printed circuit board is provided, wherein the stem may have conductive rings for making the positive and negative connections to the printed circuit board power distribution planes. Inside the capacitive stem, current, or at least a portion thereof, may be carried to the main body of the capacitor through low-inductance plates that are interleaved to maximize their own mutual inductance and, therefore, minimize the connection inductance. Alternatively, the capacitor may include a coaxial stem that forms a coaxial transmission line with the anode and cathode terminals forming the inner and outer conductors.
Abstract:
Structures employed by a plurality of packages, printed circuit boards, connectors and interposers to create signal paths which reduce the deleterious signal quality issues associated with the use of through-holes. Disclosed structures can coexist with through-hole implementations.
Abstract:
A manufacturing method of a multi-layered circuit board allows electronic parts to be mounted adequately and will not hamper performance of the electronic parts. A power terminal (pin) of an electronic part to be mounted on a surface of the multi-layered circuit board is inserted into a plated through hole to connect with a first conductive layer. A detecting section having a detecting hole which is formed coaxially with the through hole and whose diameter is larger than the through hole is provided on a second conductive layer on the back of the first conductive layer. A hole having a large diameter is formed by a tool along the through hole from the back while applying voltage between the second conductive layer and the tool. The depth of the hole is set based on the tool electrically conducting with the detecting hole. Unnecessary plate of the through hole may be removed by the large hole.
Abstract:
An electrical component is mounted a circuit board. A case covers the circuit board. The circuit board includes a plate-like metal core and an insulation portion. The insulation portion covers a surface of the metal core. The metal core is provided with a heat radiation portion exposed from the case.
Abstract:
The present invention provides a PWB for attaching electrical components thereto. The PWB includes a stack of insulating layers, conductive layers located between the insulating layers, wherein the conductive layers terminate at an edge of the PWB, and an edge plate interconnect located on the edge. The edge plate interconnect is free of a complementary via and contacts and electrically interconnects the conductive layers. The present invention also provides a method of making the PWB and also provides a power converter implementing the edge plate interconnects.
Abstract:
An electrical circuit device that includes a circuit board with an integrated circuit chip in a cavity that extends from a surface of the circuit board to an embedded conductor, and an electrical connection between the integrated circuit chip and the embedded conductor.