Abstract:
This invention relates to a solder structure which provides enhanced fatigue life properties when used to bond substrates particularly at the second level such as BGA and CGA interconnections. The solder structure is preferably a sphere or column and has a metal layer wettable by solder and the structure is used to make solder connections in electronic components such as joining an electronic module such as a chip connected to a MLC which module is connected to a circuit board. The solder structure preferably has an overcoat of solder on the metal layer to provide a passivation coating to the metal layer to keep it clean from oxidation and corrosion and also provide a wettable surface for attachment of the solder structure to solder on the pads of the substrate being bonded.
Abstract:
A connective medium is provided for use in ball grid assemblies for detachable connections between electronic devices and circuit boards. The medium includes novel, discrete spheres defining an inner metallic, spherical core and one or more outer, electrically conductive concentric, hard and non-deformable metallic layers of nickel, copper or alloys thereof and a coating of silver or gold thereon.
Abstract:
A method for manufacturing a pin grid array type semiconductor device package including a substrate having a principle surface and a bottom surface opposing the principal surface, a plurality of patterned metallized conductors formed in the substrate or on the principal surface of the substrate so as to be electrically connected to a semiconductor device chip to be located on the principal surface. A plurality of metallized pads are formed on the bottom surface and electrically connected to the patterned metallized conductors. A metal film is deposited so as to cover the bottom surface including the metallized pads, and a lead pin is soldered on the metal film above each metallized pad by a solder material. The lead pin is electroplated by applying a voltage to the metal film.
Abstract:
A body formed of a lead-tin solder alloy is pretreated to deposit palladium thereon prior to soldering to a metallic substrate. It is found that the palladium deposit enhances wetting of the substrate by the solder liquid during reflow and thereby, upon cooling, produces a strong metallurgical bond. In a preferred embodiment, lead-tin solder balls are pretreated by applying tin-palladium colloidal particles and dissociating the particles to form a discontinuous metallic palladium deposit.
Abstract:
Hybrid solder for solder balls and filled paste are described. A solder ball may be formed of a droplet of higher temperature solder and a coating of lower temperature solder. This may be used with a solder paste that has an adhesive and a filler of low temperature solder particles, the filler comprising less than 80 weight percent of the paste. The solder balls and paste may be used in soldering packages for microelectronic devices. A package may be formed by applying a solder paste to a bond pad of a substrate, attaching a hybrid solder ball to each pad using the paste, and attaching the package substrate to a microelectronic substrate by reflowing the hybrid solder balls to form a hybrid solder interconnect.
Abstract:
A semiconductor package includes a first package and a second package, a connection terminal disposed between the first and second packages and including a first solder ball and a second solder ball that are vertically stacked, a solder passivation layer with which a surface of at least one of the first and second solder balls is coated, and a ring-shaped short prevention part surrounding a coupling portion between the first and second solder balls.
Abstract:
In soldering an electronic component, for the purpose of leading molten solder during re-flow, metallic powder 8 is mixed into flux employed so as to intervene between a bump and an electrode. The metallic powder 8 has a flake or dendrite shape including a core segment 8a of the metal molten at a higher temperature than the liquid phase temperature of solder constituting a solder bump and a surface segment 8b of the metal with good-wettability for the molten solder and to be solid-solved in the core segment 8a molten. In the heating by the re-flow, the metallic powder remaining in the flux without being taken in a solder portion is molten and solidified to become substantially spherical metallic particles 18. Thus, after the re-flow, the metallic powder does not remain in a flux residue in a state where migration is likely to occur, thereby combining both solder connectivity and insurance of insulation.
Abstract:
A substrate for mounting electronic components includes an insulating layer and a pad formed on a surface of the insulating layer, the pad configured to mount an electronic component to the substrate. A solder bump is formed on the pad and configured to connecting the pad to a bump of an electronic component, the solder bump including a metal as a major component of the solder bump. A metal film is formed on a surface of the solder bump, the metal film comprising a different metal from the major component of said solder
Abstract:
In soldering an electronic component, for the purpose of leading molten solder during re-flow, metallic powder 8 is mixed into flux employed so as to intervene between a bump and an electrode. The metallic powder 8 has a flake or dendrite shape including a core segment 8a of the metal molten at a higher temperature than the liquid phase temperature of solder constituting a solder bump and a surface segment 8b of the metal with good-wettability for the molten solder and to be solid-solved in the core segment 8a molten. In the heating by the re-flow, the metallic powder remaining in the flux without being taken in a solder portion is molten and solidified to become substantially spherical metallic particles 18. Thus, after the re-flow, the metallic powder does not remain in a flux residue in a state where migration is likely to occur, thereby combining both solder connectivity and insurance of insulation.
Abstract:
A microelectronic assembly and method for fabricating the same are described. In an example, a microelectronic assembly includes a microelectronic device having a surface with one or more areas to receive one or more solder balls, the one or more areas having a surface finish comprising Ni. A solder material comprising Cu, such as flux or paste, is applied to the Ni surface finish and one or more solder balls are coupled to the microelectronic device by a reflow process that forms a solder joint between the one or more solder balls, the solder material comprising Cu, and the one or more areas having a surface finish comprising Ni.