摘要:
A method of forming dielectric spacers including providing a substrate comprising a first region having a first plurality of gate structures and a second region having a second plurality of gate structures and at least one oxide containing material or a carbon containing material. Forming a nitride containing layer over the first region having a thickness that is less than the thickness of the nitride containing layer that is present in the second region. Forming dielectric spacers from the nitride containing layer on the first plurality the second plurality of gate structures. The at least one oxide containing material or carbon containing material accelerates etching in the second region so that the thickness of the dielectric spacers in the first region is substantially equal to the thickness of the dielectric spacers in the second region of the substrate.
摘要:
A substrate includes a first region having a first resistivity, for optimizing a field effect transistor, a second region having a second resistivity, for optimizing an npn subcollector of a bipolar transistor device and triple well, a third region having a third resistivity, with a high resistivity for a passive device, a fourth region, substantially without implantation, to provide low perimeter capacitance for devices.
摘要:
Method of manufacturing a structure which includes the steps of providing a structure having an insulator layer with at least one interconnect, forming a sub lithographic template mask over the insulator layer, and selectively etching the insulator layer through the sub lithographic template mask to form sub lithographic features spanning to a sidewall of the plurality of interconnects.
摘要:
A method includes receiving at least one wafer having a front side and a backside, where the front side has a plurality of integrated circuit chips thereon. The backside of the wafer is thinned, a pattern of material is removed from the backside of the wafer to form a plurality of dicing trenches. Each of the dicing trenches are positioned opposite a location on the front side of the wafer that corresponds to edges of each of the plurality of chips. The dicing trenches are filled with a filler material and a dicing support is attached to a front side of the wafer. The filler material is removed from the dicing trenches, and a force is applied to the dicing support to separate each of the plurality of chips on the wafer from each other along the dicing trenches.
摘要:
Bottom sides of two semiconductor substrates are brought together with at least one bonding material layer therebetween and bonded to form a bonded substrate. A cavity with two openings and a contiguous path therebetween is provided within the at least one bonding layer. At least one through substrate via and other metal interconnect structures are formed within the bonded substrate. The cavity is employed as a cooling channel through which a cooling fluid flows to cool the bonded semiconductor substrate during the operation of the semiconductor devices in the bonded substrate. Alternatively, a conductive cooling fin with two end portions and a contiguous path therebetween is formed within the at least one bonding layer. The two end portions of the conductive cooling fin are connected to heat sinks to cool the bonded semiconductor substrate during the operation of the semiconductor devices in the bonded substrate.
摘要:
Disclosed is reinforced via farm interconnect structure for an integrated circuit chip that minimizes delamination caused by tensile stresses applied to the chip through lead-free C4 connections during thermal cycling. The reinforced via farm interconnect structure includes a plurality of vias electrically connecting metal wires within different wiring levels and, for reinforcement, further incorporates dielectric columns into the lower metal wire so that the areas around the metal-to-metal interface between the vias and the lower metal wire contain a relatively strong dielectric-to-dielectric interface. The reinforced via farm interconnect structure can be located in an area of the chip at risk for delamination and, for added strength, can have a reduced via density relative to conventional via farm interconnect structures located elsewhere on the chip. Also disclosed are a method of forming the reinforced via farm interconnect structure and a method of redesigning an integrated circuit chip to include reinforced via farm interconnect structure(s).
摘要:
The present invention relates to a method for minimizing breakage of wafers during or after a wafer thinning process. A method of forming a rounded edge to the portion of a wafer remaining after surface grinding process is provided. The method comprises providing a semiconductor wafer having an edge and forming a recess in the edge of the wafer using any suitable mechanical or chemical process. The method further comprises forming a substantially continuous curved shape for at least the edge of the wafer located above the recess. Advantageously, the shape of the wafer is formed prior to the backside grind process to prevent problems caused by the otherwise presence of a sharp edge during the backside grind process.
摘要:
Disclosed are embodiments of a structure having a metal layer with top surface and sidewall passivation and a method of forming the structure. In one embodiment, a metal layer is electroplated onto a portion of a seed layer at the bottom of a trench. Then, the sidewalls of the metal layer are exposed and, for passivation, a second metal layer is electroplated onto the top surface and sidewalls of the metal layer. In another embodiment, a trench is formed in a dielectric layer. A seed layer is formed over the dielectric layer, lining the trench. A metal layer is electroplated onto the portion of the seed layer within the trench and a second metal layer is electroplated onto the top surface of the metal layer. Thus, in this case, passivation of the top surface and sidewalls of the metal layer is provided by the second metal layer and the dielectric layer, respectively.
摘要:
In one embodiment, a collar structure includes a non-conductive layer that relieves stress around the perimeter of each of the solder balls that connect the semiconductor die to the semiconductor chip package substrate, and another non-conductive layer placed underneath to passivate the entire surface of the die.
摘要:
Method of forming wires in integrated circuits. The methods include forming a wire in a first dielectric layer on a substrate; forming a dielectric barrier layer over the wire and the first dielectric layer; forming a second dielectric layer over the barrier layer; forming one or more patterned photoresist layers over the second dielectric layer; performing a reactive ion etch to etch a trench through the second dielectric layer and not through the barrier layer; performing a second reactive ion etch to extend the trench through the barrier layer; and after performing the second reaction ion etch, removing the one or more patterned photoresist layers, a last formed patterned photoresist layer removed using a reducing plasma or a non-oxidizing plasma. The methods include forming wires by similar methods to a metal-insulator-metal capacitor.