Abstract:
An electronic device package and fabrication method thereof is provided. First, a semiconductor substrate is provided and the upper surface of it is etched to from recesses. A first isolation layer is formed on the upper surface and the sidewalls of the recesses. A conductive part is formed to fulfill the recesses and a conductive pad is formed on the first isolation layer to connect the conductive part. An electronic device is combined with the semiconductor substrate on the supper surface, wherein the electronic device has a connecting pad electrically connected to the conductive pad. The semiconductor substrate is thinned form its lower surface to expose the conductive part. A second isolation layer is formed below the lower surface and has an opening to expose the conductive part. A redistribution metal line is formed below the second isolation layer and in the opening to electrically connect to the conductive part.
Abstract:
A chip package is provided. The chip package includes a chip having an upper surface, a lower surface and a sidewall. The chip includes a sensing region or device region and a signal pad region adjacent to the upper surface. A shallow recess structure is located outside of the signal pad region and extends from the upper surface toward the lower surface along the sidewall. The shallow recess structure has at least a first recess and a second recess under the first recess. A redistribution layer is electrically connected to the signal pad region and extends into the shallow recess structure. A first end of a wire is located in the shallow recess structure and is electrically connected to the redistribution layer. A second end of the wire is used for external electrical connection. A method for forming the chip package is also provided.
Abstract:
An embodiment of the disclosure provides a chip package which includes: a semiconductor substrate having a first surface and a second surface; a first recess extending from the first surface towards the second surface; a second recess extending from a bottom of the first recess towards the second surface, wherein a sidewall and the bottom of the first recess and a second sidewall and a second bottom of the second recess together form an exterior side surface of the semiconductor substrate; a wire layer disposed on the first surface and extending into the first recess and/or the second recess; an insulating layer located between the wire layer and the semiconductor substrate; a chip disposed on the first surface; and a conducting structure disposed between the chip and the first surface.
Abstract:
A chip package includes a chip, an isolation layer, a redistribution layer, a passivation layer, and an encapsulation layer. The chip has a sensor, a conductive pad, a through hole, a top surface, and a bottom surface that is opposite the top surface. The sensor and the conductive pad are located on the top surface, and the conductive pad is in the through hole. The isolation layer is located on the bottom surface of the chip and a sidewall that surrounds the through hole. The redistribution layer is located on the isolation layer, and is in electrical contact with the conductive pad. The passivation layer is located on the isolation layer and the redistribution layer. The encapsulation layer is located on the top surface of the chip and covers the sensor and the conductive pad, and has a flat surface facing away from the chip.
Abstract:
A chip package includes a chip, an adhesive layer, and a dam element. The chip has a sensing area, a first surface, and a second surface that is opposite to the first surface. The sensing area is located on the first surface. The adhesive layer covers the first surface of the chip. The dam element is located on the adhesive layer and surrounds the sensing area. The thickness of the dam element is in a range from 20 μm to 750 μm, and the wall surface of the dam element surrounding the sensing area is a rough surface.
Abstract:
A chip package includes a first chip and a second chip. The first chip includes a first substrate having a first surface and a second surface opposite to the first surface, a first passive element on the first surface, and a first protection layer covering the first passive element, which the first protection layer has a third surface opposite to the first surface. First and second conductive pad structures are disposed in the first protection layer and electrically connected to the first passive element. The second chip is disposed on the third surface, which the second chip includes an active element and a second passive element electrically connected to the active element. The active element is electrically connected to the first conductive pad structure.
Abstract:
A chip package includes a chip, an isolation layer, and a redistribution layer. The chip has a substrate, an electrical pad, and a protection layer. The substrate has a first surface and a second surface. The substrate has a through hole, and protection layer has a concave hole, such that the electrical pad is exposed through the concave hole and the through hole. The isolation layer is located on the second surface, the sidewall of the through hole, and the sidewall of the concave hole. The redistribution layer includes a connection portion and a passive element portion. The connection portion is located on isolation layer and in electrical contact with the electrical pad. The passive element portion is located on isolation layer that is on second surface, and an end of passive element portion is connected to connection portion that is on the second surface.
Abstract:
A chip package includes a substrate, a capacitive sensing layer and a computing chip. The substrate has a first surface and a second surface opposite to the first surface, and the capacitive sensing layer is disposed above the second surface and having a third surface opposite to the second surface, which the capacitive sensing layer includes a plurality of capacitive sensing electrodes and a plurality of metal wires. The capacitive sensing electrodes are on the second surface, and the metal wires are on the capacitive sensing electrodes. The computing chip is disposed above the third surface and electrically connected to the capacitive sensing electrodes.
Abstract:
A semiconductor structure includes a chip, a light transmissive plate, a spacer, and a light-shielding layer. The chip has an image sensor, a first surface and a second surface opposite to the first surface. The image sensor is located on the first surface. The light transmissive plate is disposed on the first surface and covers the image sensor. The spacer is between the light transmissive plate and the first surface, and surrounds the image sensor. The light-shielding layer is located on the first surface between the spacer and the image sensor.
Abstract:
An embodiment of this invention provides a separation apparatus for separating a stacked article, such as a semiconductor chip package with sensing functions, comprising a substrate and a cap layer formed on the substrate. The separation apparatus comprises a vacuum nozzle head including a suction pad having a top surface and a bottom surface, a through hole penetrating the top surface and the bottom surface of the suction pad, and a hollow vacuum pipe connecting the through hole to a vacuum pump; a stage positing under the vacuum nozzle head and substantially aligning with the suction pad; a control means coupling to the vacuum nozzle head to lift upward or lower down the vacuum nozzle head; and a first cutter comprising a first cutting body and a first knife connecting to the first cutting body. The cap layer is pressed against by the bottom surface of the suction pad and sucked by the suction pad of the vacuum nozzle head after the vacuum pump begins to vacuum the air within the hollow vacuum pipe and the through hole. Then, the first cutter cuts into the interface between the substrate and the cap layer, and the cap lay is separated from the substrate by the suction force of the vacuum nozzle head and the lift force generated by the upward movement of the vacuum nozzle head.