Abstract:
Stacked dies (110) are encapsulated in an interposer's cavity (304) by multiple encapsulant layers (524) formed of moldable material. Conductive paths (520, 623) connect the dies to the cavity's bottom all (304B) and, through TSVs passing through the bottom wall, to a conductor below the interposer. The conductive paths can be formed in segments each of which is formed in a through-hole (514) in a respective encapsulant layer. Each segment can be formed by electroplating onto a lower segment; the electroplating current can be provided from below the interposer through the TSVs and earlier formed segments. Other features are also provided.
Abstract:
An assembly with modules (110, 1310) containing integrated circuits and attached to a wiring substrate (120) is reinforced by one or more reinforcement frames (410) attached to the wiring substrate. The modules are located in openings (e.g. cavities and/or through-holes 414) in the reinforcement frame. Other features are also provided.
Abstract:
A component such as an interposer or microelectronic element can be fabricated with a set of vertically extending interconnects of wire bond structure. Such method may include forming a structure having wire bonds extending in an axial direction within one of more openings in an element and each wire bond spaced at least partially apart from a wall of the opening within which it extends, the element consisting essentially of a material having a coefficient of thermal expansion (“CTE”) of less than 10 parts per million per degree Celsius (“ppm/° C.”). First contacts can then be provided at a first surface of the component and second contacts provided at a second surface of the component facing in a direction opposite from the first surface, the first contacts electrically coupled with the second contacts through the wire bonds.
Abstract:
A workpiece (120) has protruding conductive features (140) at least on a first side. The second side is processed while the workpiece is held from the first side by a holder (220H). To prevent damage to the protruding features and flatten the workpiece (which could be otherwise warped), a spacer (210) is inserted between the workpiece and the holder. The spacer has holes (250) receiving the protruding features. The workpiece can be held by forces generated by the holder such as vacuum or an electrostatic force, without an adhesive. Other features and advantages are provided.
Abstract:
Capacitors and methods of making the same are disclosed herein. In one embodiment, a capacitor comprises a structure having first and second oppositely facing surfaces and a plurality of pores each extending in a first direction from the first surface towards the second surface, and each having pore having insulating material extending along a wall of the pore; a first conductive portion comprising an electrically conductive material extending within at least some of the pores; and a second conductive portion comprising a region of the structure consisting essentially of aluminum surrounding individual pores of the plurality of pores, the second conductive portion electrically isolated from the first conductive portion by the insulating material extending along the walls of the pores.
Abstract:
An apparatus relating generally to a substrate is disclosed. In this apparatus, a first metal layer is on the substrate. The first metal layer has an opening. The opening of the first metal layer has a bottom and one or more sides extending from the bottom. A second metal layer is on the first metal layer. The first metal layer and the second metal layer provide a bowl-shaped structure. An inner surface of the bowl-shaped structure is defined responsive to the opening of the first metal layer and the second metal layer thereon. The opening of the bowl-shaped structure is configured to receive and at least partially retain a bonding material during a reflow process.
Abstract:
Interposers and methods of making the same are disclosed herein. In one embodiment, an interposer includes a region having first and second oppositely facing surfaces and a plurality of pores, each pore extending in a first direction from the first surface towards the second surface, wherein alumina extends along a wall of each pore; a plurality of electrically conductive connection elements extending in the first direction, consisting essentially of aluminum and being electrically isolated from one another by at least the alumina; a first conductive path provided at the first surface for connection with a first component external to the interposer; and a second conductive path provided at the second surface for connection with a second component external to the interposer, wherein the first and second conductive paths are electrically connected through at least some of the connection elements.
Abstract:
Techniques for manufacturing memory devices, such as 3-dimensional NAND (3D-NAND) memory devices, may include splitting gate planes (e.g., the planes that include the word lines) into strips, thereby splitting the memory cells and increasing a density of memory cells for a respective memory device. The techniques described herein are applicable to various types of 3D-NAND or other memory devices.
Abstract:
Techniques are disclosed herein for creating over and under interconnects. Using techniques described herein, over and under interconnects are created on an IC. Instead of creating signaling interconnects and power/ground interconnects on a same side of a chip assembly, the signaling interconnects can be placed on an opposing side of the chip assembly as compared to the power interconnects.
Abstract:
A substrate structure is presented that can include a porous polyimide material and electrodes formed in the porous polyimide material. In some examples, a method of forming a substrate can include depositing a barrier layer on a substrate; depositing a resist over the barrier layer; patterning and etching the resist; forming electrodes; removing the resist; depositing a porous polyimide aerogel; depositing a dielectric layer over the aerogel material; polishing a top side of the interposer to expose the electrodes; and removing the substrate from the bottom side of the interposer.