Abstract:
A package on packaging structure comprising a first package and a second package provides for improved thermal conduction and mechanical strength by the introduction of a thermally conductive substrate attached to the second package. The first package has a first substrate and a first integrated circuit. The second package has a second substrate containing through vias that has a first coefficient of thermal expansion. The second package also has a second integrated circuit having a second coefficient of thermal expansion located on the second substrate. The second coefficient of thermal expansion deviates from the first coefficient of thermal expansion by less than about 10 or less than about 5 parts-per-million per degree Celsius. A first set of conductive elements couples the first substrate and the second substrate. A second set of conductive elements couples the second substrate and the second integrated circuit.
Abstract:
A package stack structure includes a lower semiconductor chip on a lower package substrate having a plurality of lower via plug lands, a lower package having a lower molding compound surrounding a portion of a top surface of the lower package substrate and side surfaces of the lower semiconductor chip, an upper semiconductor chip on an upper package substrate having a plurality of upper via plug lands, an upper package having an upper molding compound covering the upper semiconductor chip, via plugs vertically penetrating the lower molding compound, the via plugs connecting the lower and upper via plug lands, respectively, and a fastening element and an air space between a top surface of the lower molding compound and a bottom surface of the upper package substrate.
Abstract:
An embodiment device includes a first die, a second die electrically connected to the first die, and a heat dissipation surface on a surface of the second die. The device further includes a package substrate electrically connected to the first die. The package substrate includes a through-hole, and the second die is at least partially disposed in the through hole.
Abstract:
A semiconductor module includes a semiconductor device and a flexible relay member. The semiconductor device includes a resin member, an electronic component sealed with the resin member, and a lead member having an inner lead and an outer lead. The inner lead is located inside the resin member and electrically connected to the electronic component. The outer lead extends from the inner lead and is located outside the resin member. The relay member is electrically connected to the outer lead to electrically connect the electronic component to a connection target to be electrically connected to the semiconductor device.
Abstract:
Package-on-package (POP) devices and methods of manufacturing the POP devices are provided. In the POP devices, a thermal interface material layer disposed between lower and upper semiconductor packages may contact about 70% or greater of an area of a top surface of a lower semiconductor chip. According to methods, the upper semiconductor package may be mounted on the lower semiconductor chip using a weight.
Abstract:
A semiconductor package includes a processor die (e.g., an SoC) and one or more memory die (e.g., DRAM) coupled to a ball grid array (BGA) substrate. The processor die and the memory die are coupled to opposite sides of the BGA substrate using terminals (e.g., solder balls). The package may be coupled to a printed circuit board (PCB) using one or more terminals positioned around the perimeter of the processor die. The PCB may include a recess with at least part of the processor die being positioned in the recess. Positioning at least part of the processor die in the recess reduces the overall height of the semiconductor package assembly. A voltage regulator may also be coupled to the BGA substrate on the same side as the processor die with at least part of the voltage regulator being positioned in the recess a few millimeters from the processor die.
Abstract:
The present invention relates to a method of making a semiconductor package with package-on-package stacking capability. In accordance with a preferred embodiment, the method is characterized by the step of attaching a chip-on-interposer subassembly on a metallic carrier with the chip inserted into a cavity of the metallic carrier, and the step of selectively removing portions of the metallic carrier to define a heat spreader for the chip. The heat spreader can provide thermal dissipation, electromagnetic shielding and moisture barrier, whereas the interposer provides a CTE-matched interface and fan-out routing for the chip.
Abstract:
A semiconductor package includes a substrate, a ground circuit supported by the substrate, at least one semiconductor chip disposed on the substrate and a carbon-containing heat-dissipating part disposed on the substrate and electrically connected to the ground circuit. The heat-dissipating part may include carbon fibers and/or carbon cloth.
Abstract:
An electronic system includes a first electronic device (with a first integrated-circuit chip) and a second electronic device (with a second integrated-circuit chip). The second electronic device is stacked above the first electronic device on a same side as the first integrated-circuit chip. Electrical connection elements located around the first integrated-circuit chip electrically connected to the second electronic device to the first electronic device. A metal plate configured for heat capture and transfer extends between the first and second electronic devices. The metal plate includes through-passages aligned to permit the electrical connection elements to pass at a distance.
Abstract:
A memory device with die stacking is provided. A plurality of substrates layers are stacked together into a stack. Each substrate layer may include a substrate having a plurality of cavities to receive integrated circuit components within the thickness of the substrate. A plurality of conductive spheres are arranged between at least two adjacent substrate layers and are electrically coupled to the integrated circuit components in at least one of the two adjacent substrates. The two adjacent substrate layers of the stack include: (a) a first substrate having a first plurality of cavities to receive integrated circuit components, and (b) a second substrate having a second plurality of cavities to receive integrated circuit components, wherein the first plurality of cavities is offset from a second plurality of cavities.