摘要:
A semiconductor device is made by disposing a plurality of semiconductor die on a carrier and creating a gap between each of the semiconductor die. A first insulating material is deposited in the gap. A portion of the first insulating material is removed. A conductive layer is formed over the semiconductor die. A conductive lining is conformally formed on the remaining portion of the first insulating material to form conductive via within the gap. The conductive vias can be tapered or vertical. The conductive via is electrically connected to a contact pad on the semiconductor die. A second insulating material is deposited in the gap over the conductive lining. A portion of the conductive via may extend outside the first and second insulating materials. The semiconductor die are singulated through the gap. The semiconductor die can be stacked and interconnected through the conductive vias.
摘要:
A semiconductor device has a semiconductor die with a peripheral region around the die. A first insulating material is deposited in the peripheral region. A conductive via is formed through the first insulating material. A conductive layer is formed over the semiconductor die. The conductive layer is electrically connected between the conductive via and a contact pad of the semiconductor die. A second insulating layer is deposited over the first insulating layer, conductive layer, and semiconductor die. A profile is formed in the first and second insulating layers in the peripheral region. The profile is tapered, V-shaped, truncated V-shape, flat, or vertical. A shielding layer is formed over the first and second insulating layers to isolate the semiconductor die from inter-device interference. The shielding layer conforms to the profile in the peripheral region and electrically connects the shielding layer to the conductive via.
摘要:
A semiconductor package can comprise a die stack attached to a substrate, with bond wires electrically connecting the two. Often multiple die stacks are adhered to a single substrate so that several semiconductor packages can be manufactured at once. A molding compound flow controller is optimally associated with the substrate or semiconductor package at one or more various locations. Flow controllers can control or direct the flow of the molding compound during the encapsulation process. Flow controllers can be sized, shaped, and positioned in order to smooth out the flow of the molding compound, such that the speed of the flow is substantially equivalent over areas of the substrate containing dies and over areas of the substrate without dies. In this manner, defects such as voids in the encapsulation, wire sweeping, and wire shorts can be substantially avoided during encapsulation.
摘要:
The present invention provides a package system including: providing a semiconductor die with a contact pad and a ground pad, mounting the semiconductor die on a package substrate using and adhesive layer, forming a vertical conductive structure on top of the ground pad in the semiconductor die, encapsulating at least portions of the semiconductor die, the vertical conductive structure, and the package substrate using an encapsulant, covering at least portions of the encapsulant and the vertical conductive structure with a shielding layer to place the vertical conductive structure in electrical contact with the shielding layer, and connecting the shielding layer to the package substrate.
摘要:
A semiconductor device is manufactured by, first, providing a wafer designated with a saw street guide. The wafer is taped with a dicing tape. The wafer is singulated along the saw street guide into a plurality of dies having a plurality of gaps between each of the plurality of dies. The dicing tape is stretched to expand the plurality of gaps to a predetermined distance. An organic material is deposited into each of the plurality of gaps. A top surface of the organic material is substantially coplanar with a top surface of a first die of the plurality of dies. A plurality of via holes is formed in the organic material. Each of the plurality of via holes is patterned to each of a plurality of bond pad locations on the plurality of dies. A conductive material is deposited in each of the plurality of via holes.
摘要:
An integrated circuit solder bumping system provides a substrate and forms a redistribution layer on the substrate. An insulation layer is formed on the redistribution layer. The insulation layer has a plurality of openings therethrough. A first UBM layer of titanium is deposited on the insulation layer and in the openings therethrough. A second UBM layer of chromium/copper alloy is deposited on the first UBM layer. A third UBM layer of copper is deposited on the second UBM layer. UBM pads of at least two different sizes are formed from the UBM layers. Solder paste is printed over at least some of the UBM pads. The solder paste is reflowed to form at least smaller solder bumps on at least some of the UBM pads. Bigger solder bumps are formed on at least some of the UBM pads.
摘要:
A leadless package system includes: providing a chip carrier having indentations defining a pattern for a protrusion for external contact terminals; placing an external coating layer in the indentations in the chip carrier; layering a conductive layer on top of the external coating layer; depositing an internal coating layer on the conductive layer; patterning the internal coating layer and the conductive layer to define external contact terminals with a T-shape profile; connecting an integrated circuit die to the external contact terminals; encapsulating the integrated circuit die and external contact terminals; and separating the chip carrier from the external coating layer.
摘要:
A method of forming through-hole vias in a semiconductor wafer involves forming a semiconductor wafer with many die having contact pads disposed on each die. The semiconductor wafer has saw street guides between each die. A trench is formed in the saw streets. The trench extends partially but not completely through the wafer. The uncut portion of the saw street guides below the trench along a backside of the wafer maintains structural support for the semiconductor wafer. The trench is filled with organic material. Via holes are formed in the organic material. Traces are formed between the contact pads and via holes. Conductive material is deposited in the via holes to form metal vias. The uncut portion of the saw streets below the trench along the backside of the semiconductor wafer portion is removed. The semiconductor wafer is singulated along the saw street guides to separate the die.
摘要:
A semiconductor device includes a first die having top, bottom, and peripheral surfaces. A bond pad is formed over the top surface. An organic material is connected to the first die and disposed around the peripheral surface. A via hole is formed in the organic material. A metal trace connects the via hole to the bond pad. A conductive material is deposited in the via hole. A redistribution layer (RDL) has an interconnection pad disposed over the top surface of the first die.
摘要:
A semiconductor wafer contains a plurality of die with contact pads disposed on a first surface of each die. Metal vias are formed in trenches in the saw street guides and are surrounded by organic material. Traces connect the contact pads and metal vias. The metal vias can be half-circle vias or full-circle vias. The metal vias are surrounded by organic material. Redistribution layers (RDL) are formed on a second surface of the die opposite the first surface. The RDL and THV provide expanded interconnect flexibility to adjacent die. Repassivation layers are formed between the RDL on the second surface of the die for electrical isolation. The die are stackable and can be placed in a semiconductor package with other die. The RDL provide electrical interconnect to the adjacent die. Bond wires and solder bumps also provide electrical connection to the semiconductor die.