摘要:
A semiconductor chip includes a chip body and a plurality of solder-including electrodes provided on an element-formation surface of the chip body. A packaging substrate includes a substrate body, and a plurality of wirings and a solder resist layer that are provided on a front surface of the substrate body. The plurality of solder-including electrodes include a plurality of first electrodes and a plurality of second electrodes. The plurality of first electrodes supply a first electric potential, and the plurality of second electrodes supply a second electric potential different from the first electric potential. The plurality of first electrodes and the plurality of second electrodes are disposed alternately in both a row direction and a column direction, in a central part of the chip body. The plurality of wirings include a plurality of first wirings and a plurality of second wirings. The plurality of first wirings connect the plurality of first electrodes, and the plurality of second wirings connect the plurality of second electrodes.
摘要:
A plurality of protruding electrodes of a semiconductor chip are in contact with a plurality of electrodes formed on a semiconductor substrate, via a plurality of solder sections. In this state, the solder sections are melted so as to form a plurality of solder bonding sections joined to the protruding electrodes of the semiconductor chip and the electrodes of the semiconductor substrate. Moreover, a distance between a part of the semiconductor chip and the semiconductor substrate is larger than a distance between the other part of the semiconductor chip and the semiconductor substrate, extending at least some of the solder bonding sections. Thus, the solder bonding sections vary in height. Holes are then formed at least in a solder bonding section having a maximum height out of the solder bonding sections. After that, the solder bonding sections are solidified.
摘要:
A semiconductor device package and a fabrication method thereof are disclosed. The semiconductor package comprises: a package component having a first mounting surface and a second mounting surface; and a first electronic component having a first conductive pad signal communicatively mounted on the first mounting surface through a first type connector; wherein the first type connector comprises a first solder composition having a lower melting point layer sandwiched between a pair of higher melting point layers, wherein the lower melting point layer is composed of alloys capable of forming a room temperature eutectic.
摘要:
A fluxless bonding process is provided. An array of micro solder bumps of a first semiconductor structure is aligned to an array of bonding pads of a second semiconductor structure under an applied bonding force. An environment is provided to prevent oxides from forming on the solder bump structures and bonding pads during the bonding process. A scrubbing process is performed at a given scrubbing frequency and amplitude to scrub the micro solder bumps against the bonding pads in a direction perpendicular to the bonding. Heat is applied to at least the first semiconductor structure to melt and bond the micro solder bumps to the bonding pads. The first semiconductor structure is cooled down to solidify the molten solder. Coplanarity is maintained between the bonding surfaces of the semiconductor structures within a given tolerance during the scrubbing and cooling steps until solidification of the micro solder bumps.
摘要:
A mounting structure includes a bonding material (106) that bonds second electrodes (104) of a circuit board (105) and bumps (103) of a semiconductor package (101), the bonding material (106) being surrounded by a first reinforcing resin (107). Moreover, a portion between the outer periphery of the semiconductor package (101) and the circuit board (105) is covered with a second reinforcing resin (108). Even if the bonding material (106) is a solder material having a lower melting point than a conventional bonding material, high drop resistance is obtained.
摘要:
A plurality of protruding electrodes of a semiconductor chip are in contact with a plurality of electrodes formed on a semiconductor substrate, via a plurality of solder sections. In this state, the solder sections are melted so as to form a plurality of solder bonding sections joined to the protruding electrodes of the semiconductor chip and the electrodes of the semiconductor substrate. Moreover, a distance between a part of the semiconductor chip and the semiconductor substrate is larger than a distance between the other part of the semiconductor chip and the semiconductor substrate, extending at least some of the solder bonding sections. Thus, the solder bonding sections vary in height. Holes are then formed at least in a solder bonding section having a maximum height out of the solder bonding sections. After that, the solder bonding sections are solidified.
摘要:
In a soldering method for mounting a semiconductor device on a wiring board, a plurality of solid-phase solders s are provided between the semiconductor device and the wiring board, and are thermally melted to thereby produce a plurality of liquid-phase solders therebetween. A constant force is exerted on the liquid-phase solders by relatively moving the semiconductor device with respect to the wiring board so that lo an invariable gap is determined between the semiconductor device and the wiring board.
摘要:
A semiconductor device package and a fabrication method thereof are disclosed. The semiconductor package comprises: a package component having a first mounting surface and a second mounting surface; and a first electronic component having a first conductive pad signal communicatively mounted on the first mounting surface through a first type connector; wherein the first type connector comprises a first solder composition having a lower melting point layer sandwiched between a pair of higher melting point layers, wherein the lower melting point layer is composed of alloys capable of forming a room temperature eutectic.
摘要:
A method of bonding a die comprising solder bumps to a substrate comprising bond pads, the method comprising the steps of heating the die from a first temperature to a second temperature, wherein the first temperature is below the melting point of the solder bumps, and the second temperature is above the melting point of the solder bumps; moving the die relative to the substrate to a first height, whereat the solder bumps contact the bond pads; moving the die further away from the substrate to a second height, while maintaining contact between the solder bumps and bond pads; and thereafter cooling the die from the second temperature to a third temperature to allow the solder bumps to solidify so as to bond the die to the substrate.
摘要:
A fluxless bonding process is provided. An array of micro solder bumps of a first semiconductor structure is aligned to an array of bonding pads of a second semiconductor structure under an applied bonding force. An environment is provided to prevent oxides from forming on the solder bump structures and bonding pads during the bonding process. A scrubbing process is performed at a given scrubbing frequency and amplitude to scrub the micro solder bumps against the bonding pads in a direction perpendicular to the bonding. Heat is applied to at least the first semiconductor structure to melt and bond the micro solder bumps to the bonding pads. The first semiconductor structure is cooled down to solidify the molten solder. Coplanarity is maintained between the bonding surfaces of the semiconductor structures within a given tolerance during the scrubbing and cooling steps until solidification of the micro solder bumps.