Abstract:
A resin-sealed electronic controller obtained by bonding and fixing a circuit board to a thermally-conductive base plate, and integrating circuit components with a molding resin so as to reduce the size. A base plate includes a first exposed portion, a second exposed portion, and an adjacent flat portion adjacent to a central window hole. First circuit components which are low-heat-generating components with large height are located in the central window hole. Second circuit components which are high-heat-generating components with small height are provided on an area corresponding to the adjacent flat portion. A height dimension of the first circuit components at least partially overlaps a thickness dimension of the base plate, to reduce a total thickness dimension. The high-heat-generating components and the low-heat-generating components being provided separately from each other permits increased mounting density of low-heat-generating components, reducing an area of the circuit board.
Abstract:
An object of this invention is to provide an electrical junction box for a vehicle that can effectively restrain a control circuit from being subject to heat adverse effect from to a power distribution circuit, can downsize the whole structure, and can reduce the number of terminals for connecting the circuits to each other. The electrical junction box for a vehicle comprises a power distribution unit for constituting a part of the power distribution circuit, and a circuit board. A board body of the circuit board is divided into a power distribution circuit region Ap and a control circuit region Ac by a border line BL across the circuit board body. The control circuit is incorporated in the control circuit region Ac. The power distribution circuit region Ap is provided with a power distribution circuit having a current specification smaller than that of the power distribution circuit on the power distribution unit.
Abstract:
A circuit layout of an image capturing device comprises a circuit board, an image capturing circuit, a flashlight circuit and a groove. The circuit board is a multilayered structure. The image capturing circuit is built on the circuit board. The flashlight circuit is built on the circuit board. The groove is formed on the multilayered structure of the circuit board and divides the circuit board into two areas where the image capturing circuit and the flashlight circuit are respectively disposed. The image capturing circuit is located at a first area, and the flash circuit is located at a second area. Therefore, the groove can prevent the interference between the image capturing circuit and the flashlight circuit.
Abstract:
Disclosed is an electrical isolator circuit comprising an input stage comprising first and second inputs, the input stage being configured to receive an input voltage signal; an output stage comprising first and second outputs electrically connected across a load capacitor; and a DC isolator comprising a first capacitor between said first input and said first output and second capacitor between said second input and said second output. The first and second plates of each of the first, second and load capacitors are defined by conductive layers of a printed circuit board and the dielectric of each of the first, second and load capacitors are defined by a non-conducting part of the printed circuit board.
Abstract:
The present invention relates to a package having an inner shield and a method for making the same. The package includes a substrate, a plurality of electrical elements, a molding compound, an inner shield and a conformal shield. The electrical elements are disposed on the substrate. The molding compound is disposed on a surface of the substrate, encapsulates the electrical elements, and includes at least one groove. The groove penetrates a top surface and a bottom surface of the molding compound and is disposed between the electrical elements, and there is a gap between a short side of the groove and a side surface of the molding compound. The inner shield is disposed in the groove and electrically connected to the substrate. The conformal shield covers the molding compound and a side surface of the substrate, and electrically connects the substrate and the inner shield. Therefore, the inner shield enables the electrical elements to have low electromagnetic interference and high electromagnetic compatibility.
Abstract:
To reduce connection defects between a circuit substrate provided on a core substrate and a circuit to be mounted thereon, thereby improving reliability as a multilayered device mounting substrate. The device mounting substrate includes: a first circuit substrate composed of a substrate, an insulating layer formed on this substrate, and a first conductive layer (including conductive parts) formed on this insulating layer; and a second circuit substrate mounted on the first circuit substrate, being composed of a base, a second conductive layer (including conductive parts) formed on the bottom of the base, and a third conductive layer (including conductive parts) formed on the top of the base. Here, the first and second circuit substrates are bonded by pressure so that the first and second conductive parts are laminated and embedded together into the insulating layer. The first and second conductive parts form connecting areas in the insulating layer, thereby connecting the first and second circuit substrates electrically.
Abstract:
A multichip package structure includes a substrate unit, a light-emitting unit, a current-limiting unit, a frame unit and a package unit. The substrate unit includes a first chip-placing region and a second chip-placing region. The light-emitting unit includes a plurality of light-emitting chips electrically connected to the first chip-placing region. The current-limiting unit includes at least one current-limiting chip electrically connected to the second chip-placing region and the light-emitting unit. The frame unit includes a first annular colloid frame surrounding the light-emitting chips and a second annular colloid frame surrounding the current-limiting chip. The package unit includes a first package colloid body surrounded by the first annular colloid frame to cover the light-emitting chips and a second package colloid body surrounded by the second annular colloid frame to cover the current-limiting chip.
Abstract:
A solid printed circuit board is manufactured by bonding upper and lower printed circuit boards having different shapes and provided with wirings formed on surfaces thereof. A bonding layer is made of insulating material containing thermosetting resin and inorganic filler dispersed therein, and has a via-conductor made of conductive paste filling a through-hole perforated in a predetermined position of the bonding layer. This circuit board provides a packaging configuration achieving small size and thickness and three-dimensional mounting suitable for semiconductors of high performance and multiple-pin structure.
Abstract:
The invention relates to an optical-electrical wiring board (2) and an optical module (1). The optical-electrical wiring board (2) includes a substrate (8), a dielectric layer (11), first conductive layers (16a) and second conductive layers (16b). The dielectric layer (11) includes a first region (B) and a second region (C). The first region (B) constitutes a plurality of light transmission portions (11B). The second region (C) has a plurality of pairs of conductive layers each having an overlap portion (10) in which one of the plurality of second conductive layers (16b) and one of the plurality of first conductive layers (16a) overlap each other when seen through in a laminated direction (a) of the dielectric layer (11) and the substrate (8).
Abstract:
A circuit module includes: a circuit board having a first surface and a second surface opposite to the first surface; two or more electronic components mounted on the first surface; a molding resin layer which seals the first surface and the electronic components; and a conductive resin layer formed by a conductive resin on the molding resin layer. A slit penetrating the molding resin layer and reaching the first surface is formed between the two electronic components, and the conductive resin is filled inside the slit.