Abstract:
An electrical contact assembly that uses an elastomer strip for each row of individual contacts. Each contact comprises a rigid bottom pin and a flexible top pin with a pair of arms which extend over and slide along sloped surfaces of the bottom contact. The elastomer strip is located between rows of the bottom and top pins. A bottom socket housing is provided with grooves which receive each elastomer strip. A row of top pins is then placed over each elastomer strip, and through ducts in the bottom socket housing. Bottom pins are then snapped into place in between the pair of arms.
Abstract:
Methods and apparatus relating to integrating System in Package (SiP) with Input/Output (IO) board for platform miniaturization are described. In an embodiment, a SiP board includes a plurality of logic components. An IO board is coupled to the SiP board via a grid array. The plurality of logic components is provided on both sides of the SiP board and one or more of the plurality of logic components are to positioned in an opening in the IO board. Other embodiments are also disclosed and claimed.
Abstract:
Various exemplary embodiments relate to a printed circuit board (PCB) for electrically connecting a discrete array component including a pattern formed on the PCB which is a merger of a set of via pads and a discrete array component; wherein the pattern is generated by a pin mapping between the discrete array component and a via grid array on the PCB; and wherein the pattern is formed of a metal etched during a manufacturing process of the PCB.
Abstract:
In a semiconductor device (SP1) according to an embodiment, a solder resist film (first insulating layer, SR1) which is in contact with the base material layer, and a resin body (second insulating layer, 4) which is in contact with the solder resist film and the semiconductor chip, are laminated in between the base material layer (2CR) of a wiring substrate 2 and a semiconductor chip (3). In addition, a linear expansion coefficient of the solder resist film is equal to or larger than a linear expansion coefficient of the base material layer, and the linear expansion coefficient of the solder resist film is equal to or smaller than a linear expansion coefficient of the resin body. Also, the linear expansion coefficient of the base material layer is smaller than the linear expansion coefficient of the resin body. According to the above-described configuration, damage of the semiconductor device caused by a temperature cyclic load can be suppressed, and thereby reliability can be improved.
Abstract:
A socket housing and contact assembly process includes forming the solder ball contact region after initial installation of a set of contacts into the housing. The contact regions of the set of contacts pass through corresponding contact cavities to extend beyond the housing and the contact regions are formed over at equal angles for solder ball placement.
Abstract:
A low profile heat removal system suitable for removing excess heat generated by an integrated circuit operating in a compact computing environment is disclosed.
Abstract:
In one embodiment, the present invention includes a method of mounting a semiconductor device to a first side of a circuit board; and mounting at least one voltage regulator device to a second side of the circuit board, the second side opposite to the first side. The voltage regulator devices may be output filters, inductors, capacitors, and the like. In certain embodiments, the devices may be located directly underneath the semiconductor device.
Abstract:
A method of fixing reflowable elements on electrical contacts. The method includes providing a strip having a number of electrical contacts, each contact including a contact body and a tail portion extending away from the contact body. The tail portions of the contacts are then disposed adjacent an elongate reflowable member. The elongate reflowable member is pushed onto the tail portions of the plurality of contacts. Subsequently, the elongate reflowable member is cut into a plurality of separate reflowable elements, each reflowable element corresponding to one of the tail portions. The electrical contacts with the reflowable element attached thereto are separated from the strip.
Abstract:
A first interconnect substrate includes a first conductor pattern. A second interconnect substrate includes a second conductor pattern. At least a portion of the second conductor pattern is formed in a region opposite the first conductor pattern. At least either the first conductor pattern or the second conductor pattern has a repeated structure. The first conductor pattern and the second conductor pattern constitute at least a portion of an electromagnetic band gap (EBG) structure.
Abstract:
Disclosed herein is a lead pin for a package substrate. The lead pin for the package substrate according to the exemplary embodiment of the present invention includes a head part having one surface opposite to the package substrate and the other surface that is an opposite side to the one surface; and a connection pin having a pin shape bonded to the other surface of the head part, wherein the head part has a concave depression part toward the package substrate.