Abstract:
This present invention provides a chip scale sensing chip package, comprising a sensing chip having a first top surface and a first bottom surface opposite to each other, a touch plate having a second top surface and a second bottom surface opposite to each other, formed above the sensing chip, and a color layer, sandwiched between the sensing chip and the touch plate, wherein the sensing chip comprises a sensing device formed nearby the first top surface and a plurality of conductive pads formed nearby the first top surface and adjacent to the sensing device, a plurality of through silicon vias exposing their corresponding conductive pads formed on the first bottom surface, a plurality of conductive structures formed on the first bottom surface, and a re-distribution layer overlaying the first bottom surface and each through silicon via to electrically connect each conductive pad and each conductive structure.
Abstract:
An embodiment of the invention provides a chip package which includes: a semiconductor substrate having a first surface and a second surface; a device region disposed in the semiconductor substrate; a dielectric layer disposed on the first surface of the semiconductor substrate; a conducting pad structure disposed in the dielectric layer and electrically connected to the device region, a carrier substrate disposed on the dielectric layer; and a conducting structure disposed in a bottom surface of the carrier substrate and electrically contacting with the conducting pad structure.
Abstract:
A method of fabricating a wafer-level chip package is provided. First, a wafer with two adjacent chips is provided, the wafer having an upper surface and a lower surface, and one side of each chip includes a conducting pad on the lower surface. A recess and an isolation layer extend from the upper surface to the lower surface, which the recess exposes the conducting pad. A part of the isolation layer is disposed in the recess with an opening to expose the conducting pad. A conductive layer is formed on the isolation layer and the conductive pad, and a photo-resist layer is spray coated on the conductive layer. The photo-resist layer is exposed and developed to expose the conductive layer, and the conductive layer is etched to form a redistribution layer. After stripping the photo-resist layer, a solder layer is formed on the isolation layer and the redistribution layer.
Abstract:
A chip package including a chip having an upper surface, a lower surface and a sidewall is provided. The chip includes a signal pad region adjacent to the upper surface. A first recess extends from the upper surface toward the lower surface along the sidewall. At least one second recess extends from a first bottom of the first recess toward the lower surface. The first and second recesses further laterally extend along a side of the upper surface, and a length of the first recess extending along the side is greater than that of the second recess extending along the side. A redistribution layer is electrically connected to the signal pad region and extends into the second recess. A method for forming the chip package is also provided.
Abstract:
A chip package is provided, in which includes: a packaging substrate, a chip and a plurality solder balls interposed between the packaging substrate and the chip for bonding the packaging substrate and the chip, wherein the solder balls include a first portion of a first size and a second portion of a second size that is different from the first size.
Abstract:
A semiconductor structure includes a wafer, at least one nonmetal oxide layer, a pad, a passivation layer, an isolation layer, and a conductive layer. The wafer has a first surface, a second surface, a third surface, a first stage difference surface connected between the second and third surfaces, and a second stage difference surface connected between the first and third surfaces. The nonmetal oxide layer is located on the first surface of the wafer. The pad is located on the nonmetal oxide layer and electrically connected to the wafer. The passivation layer is located on the nonmetal oxide layer. The isolation layer is located on the passivation layer, nonmetal oxide layer, the first, second and third surfaces of the wafer, and the first and second stage difference surfaces of the wafer. The conductive layer is located on the isolation layer and electrically contacts the pad.
Abstract:
An embodiment of the invention provides a chip package which includes a substrate having a first surface and a second surface; a conducting pad structure located on the first surface; a dielectric layer located on the first surface of the substrate and the conducting pad structure, wherein the dielectric layer has an opening exposing a portion of the conducting pad structure; and a cap layer located on the dielectric layer and filled into the opening.
Abstract:
Disclosed herein is a semiconductor chip package, which includes a semiconductor chip, a plurality of vias, an isolation layer, a redistribution layer, and a packaging layer. The vias extend from the lower surface to the upper surface of the semiconductor chip. The vias include at least one first via and at least one second via. The isolation layer also extends from the lower surface to the upper surface of the semiconductor chip, and part of the isolation layer is disposed in the vias. The sidewall of the first via is totally covered by the isolation layer while the sidewall of the second via is partially covered by the isolation layer. The redistribution layer is disposed below the isolation layer and fills the plurality of vias, and the packaging layer is disposed below the isolation layer.
Abstract:
According to an embodiment of the invention, a chip package is provided. The chip package includes: a substrate having an upper surface and a lower surface; a plurality of conducting pads located under the lower surface of the substrate; a dielectric layer located between the conducting pads; a trench extending from the upper surface towards the lower surface of the substrate; a hole extending from a bottom of the trench towards the lower surface of the substrate, wherein an upper sidewall of the hole inclines to the lower surface of the substrate, and a lower sidewall or a bottom of the hole exposes a portion of the conducting pads; and a conducting layer located in the hole and electrically connected to at least one of the conducting pads.
Abstract:
An IC wafer and the method of making the IC wafer, the IC wafer includes an integrated circuit layer having a plurality of solder pads and an insulated layer arranged thereon, a plurality of through holes cut through the insulated layer corresponding to the solder pads respectively for the implantation of a package layer, and an electromagnetic shielding layer formed on the top surface of the insulated layer and electrically isolated from the solder pads of the integrated circuit layer for electromagnetic shielding. Thus, the integrated circuit does not require any further shielding mask, simplifying the fabrication. Further, the design of the through holes facilitates further packaging process.