Abstract:
A BGA structure having larger solder balls in high stress regions of the array is disclosed. The larger solder balls have higher solder joint reliability (SJR) and as such may be designated critical to function (CTF), whereby the larger solder balls in high stress regions carry input/output signals between a circuit board and a package mounted thereon. The larger solder balls are accommodated by recessing each ball in the package substrate, the circuit board, or both the package substrate and the circuit board. Additionally, a ball attach method for mounting a plurality of solder balls having different average diameters is disclosed.
Abstract:
This invention provides a substrate structure that can effectively prevent scattering of solder balls which are produced due to explosion attributable to evaporation of flux during reflow soldering, and spreading of molten solder to the surroundings. On a substrate, a semiconductor chip is mounted via solder paste. The substrate is provided with a groove portion which continuously or discontinuously surrounds the solder paste.
Abstract:
A flexible layered structure is disclosed having a flexible top conductive layer, a flexible bottom heat sink layer and a flexible dielectric middle layer. The combination has a longitudinal axis and a plurality of defined positions spaced along the longitudinal axis. The defined positions can be used for aligning a circuit and/or for the placement of LED lights. The flexible layered structure can be easily bent to form a LED substrate for shining light in more than one direction while efficiently removing heat arising from the LEDs.
Abstract:
A flex-rigid wiring board including a flexible wiring board, a first insulation layer positioned to a side of the flexible board and having a first hole through the first layer, a second insulation layer over the first layer and an end portion of the flexible board and with a second hole through the second layer along the axis of the first hole, a third insulation layer over the first layer and the end portion of the flexible board on the opposite side of the second layer and with a third hole through the third layer along the axis of the first hole, a first structure having a filled conductor in the first hole, a second structure having a filled conductor in the second hole along the axis of the first structure, and a third structure having a filled conductor in the third hole along the axis of the first structure.
Abstract:
A contact area is provided on a carrier for connection to a mating contact area on a further carrier using an adhesive containing conductive particles. The contact area includes at least one recess forming a drain channel for the adhesive, extending from one edge of the contact area to an opposing edge and having a width being less than an average diameter of the particles. Alternatively, the contact area includes boreholes extending from a main surface to an opposing main surface and having diameters being approximately equal to or smaller than the average diameter of the particles in at least one direction and a cavity is formed in the carrier beneath the contact area. Alternatively, integral moldings forming a turf structure are provided on the contact area and distances between the moldings are equal to or smaller than the average diameter of the particles in at least one direction.
Abstract:
A wiring substrate (10, 40, 60, 80) includes a wiring pattern (13, 21, 41, 43, 65, 83a, 83b, 83c) and an insulating layer (11, 26, 48, 81) to which the wiring pattern is fixed. The insulating layer includes an edge. The wiring pattern (13, 21, 41, 43, 65, 83a, 83b, 83c) includes a joint portion (14, 44, 66) connected with the insulating layer (11, 26, 48, 81) and an extended portion (45, 45, 67, 85) that extends from the joint portion (14, 44, 66) and protrudes from the edge of the insulating layer (11, 26, 48, 81). The insulating layer (11, 26, 48, 81) or the joint portion (14, 44, 66) includes an outermost surface. A connection terminal (T, T1) is provided by bending the extended portion (45, 45, 67, 85) so that a part of the extended portion (45, 45, 67, 85) is protruded from the outermost surface of the insulating layer (11, 26, 48, 81) or the joint portion (14, 44, 66).
Abstract:
There is provided a printed wiring board which includes a substrate, and a soldering portion disposed on the substrate, an electronic component being to be soldered to the solder portion. The soldering portion includes a first conductor to which a solder paste is applied, and a plurality of second conductors extends in a direction away from the first conductor, where the plurality of second conductors extend parallel to each other and linearly.
Abstract:
Provided are a heat sink package in which a semiconductor package and a heat sink are bound to each other and a method of fabricating the same. The heat sink package includes a heat sink having a cavity on an upper surface thereof; a metal layer formed on the bottom surface of the cavity; a solder paste layer formed on the metal layer; a substrate on the solder paste layer; and a lead and a semiconductor chip mounted on the substrate.
Abstract:
A wired circuit board includes an insulating layer to be formed with an opening extending therethrough in a thickness direction of the wired circuit board, a conductive layer formed on one surface of the insulating layer in the thickness direction and including a one-side terminal portion, an other-side terminal portion formed on the other surface of the insulating layer in the thickness direction, disposed so as to overlap the opening and the one-side terminal portion when projected in the thickness direction, and used to be connected to an electronic element via a conductive adhesive, and a conductive portion filling the opening to provide electrical conduction between the one-side terminal portion and the other-side terminal portion.