Abstract:
The invention relates to a projection lens assembly for directing a beam toward a target. This assembly includes a lens support body (52) that spans a plane (P), and has a connection region (58) and a lateral edge (56). The lens support body is arranged for insertion into a frame (42) of a processing unit along an insertion direction (X) parallel with the plane (P). The projection lens assembly includes conduits (60-64) emanating from the connection region, and a conduit guiding body (70-81) for accommodating the conduits. The guiding body includes a first guiding portion (72) for guiding the conduits from the connection region, along the plane to a lateral region (B) beyond the lateral edge. The guiding body also includes a second guiding portion (78) for guiding the conduits from the lateral region (B) toward a tilted edge (79) of the conduit guiding body.
Abstract:
A charged particle beam device (1) includes a charged particle optical lens barrel (10), a support housing (20) equipped with the charged particle optical lens barrel (10) thereon, and an insertion housing (30) inserted in the support housing (20). A first aperture member (15) is disposed in the vicinity of the center of the magnetic field of an objective lens, and a second aperture member (15) is disposed so as to externally close an opening part provided at the upper side of the insertion housing (30). Further, when a primary charged particle beam (12) is irradiated to a sample (60) arranged under the lower side of the second aperture member (31), secondary charged particles thus emitted are detected by a detector (16).
Abstract:
A particle-optical arrangement comprises a charged-particle source for generating a beam of charged particles; a multi-aperture plate arranged in a beam path of the beam of charged particles, wherein the multi-aperture plate has a plurality of apertures formed therein in a predetermined first array pattern, wherein a plurality of charged-particle beamlets is formed from the beam of charged particles downstream of the multi-aperture plate, and wherein a plurality of beam spots is formed in an image plane of the apparatus by the plurality of beamlets, the plurality of beam spots being arranged in a second array pattern; and a particle-optical element for manipulating the beam of charged particles and/or the plurality of beamlets; wherein the first array pattern has a first pattern regularity in a first direction, and the second array pattern has a second pattern regularity in a second direction electron-optically corresponding to the first direction, and wherein the second regularity is higher than the first regularity.
Abstract:
An electron beam device for inspecting a target substrate or specimen thereon includes a beam separator with an asymmetric quadrupole electrostatic deflector for improving field uniformity for a single direction of deflection. The asymmetric quadrupole electrostatic deflector includes two orthogonal electrode plates spanning roughly 60 degrees and two electrode plates spanning roughly 120 degrees, the two latter plates defining a unidirectional deflection field. The device generates a primary electron beam and focuses the primary electron beam along an optical axis into the target substrate. Secondary electrons detected at the target substrate are focused into a secondary electron beam. The beam separator with asymmetric quadrupole electrostatic deflector deflects the secondary electron beam away from the axis of the primary electron beam in the direction of deflection and into a detector array.
Abstract:
A preferred aim of the present invention is to provide a charged particle beam device having a high differential exhaust performance while maintaining a large dynamic range of an irradiation current by effectively arranging an aperture for differential pumping (111) and an objective final aperture (110). The present invention has features that a lens barrel including therein an optical system of the charged particle beam device (100) includes a first space (106) having a first degree of vacuum and a second space (105) having a degree of vacuum higher than the first degree of vacuum, and that the objective final aperture (110) is arranged in the second space (105).
Abstract:
The present invention provides apparatuses to inspect small particles on the surface of a sample such as wafer and mask. The apparatuses provide both high detection efficiency and high throughput by forming Dark-field BSE images. The apparatuses can additionally inspect physical and electrical defects on the sample surface by form SE images and Bright-field BSE images simultaneously. The apparatuses can be designed to do single-beam or even multiple single-beam inspection for achieving a high throughput.
Abstract:
The present invention provides apparatuses to inspect small particles on the surface of a sample such as wafer and mask. The apparatuses provide both high detection efficiency and high throughput by forming Dark-field BSE images. The apparatuses can additionally inspect physical and electrical defects on the sample surface by form SE images and Bright-field BSE images simultaneously. The apparatuses can be designed to do single-beam or even multiple single-beam inspection for achieving a high throughput.
Abstract:
A secondary charged particle detection device for detection of a signal beam is described. The device includes a detector arrangement having at least two detection elements with active detection areas, wherein the active detection areas are separated by a gap (G), a particle optics configured for separating the signal beam into a first portion of the signal beam and into at least one second portion of the signal beam, and configured for focusing the first portion of the signal beam and the at least one second portion of the signal beam. The particle optics includes an aperture plate and at least a first inner aperture openings in the aperture plate, and at least one second radially outer aperture opening in the aperture plate, wherein the first aperture opening has a concave shaped portion, particularly wherein the first aperture opening has a pincushion shape.
Abstract:
The invention provides a charged particle beam system wherein the middle section of the focused ion beam column is biased to a high negative voltage allowing the beam to move at higher potential than the final beam energy inside that section of the column. At low kV potential, the aberrations and coulomb interactions are reduced, which results in significant improvements in spot size.
Abstract:
A single column charged particle source with user selectable configurations operates in ion-mode for FIB operations or electron mode for SEM operations. Equipped with an x-ray detector, energy dispersive x-ray spectroscopy analysis is possible. A user can selectively configure the source to prepare a sample in the ion-mode or FIB mode then essentially flip a switch selecting electron-mode or SEM mode and analyze the sample using EDS or other types of analysis.