摘要:
A microelectronic assembly can include a substrate having first and second surfaces and an aperture extending therebetween, the substrate having terminals. The assembly can also include a first microelectronic element having a front surface facing the first surface of the substrate, a second microelectronic element having a front surface facing the first microelectronic element and projecting beyond an edge of the first microelectronic element, first and second leads electrically connecting contacts of the respective first and second microelectronic elements to the terminals, and third leads electrically interconnecting the contacts of the first and second microelectronic elements. The contacts of the first microelectronic element can be exposed at the front surface thereof adjacent the edge thereof. The contacts of the second microelectronic element can be disposed in a central region of the front surface thereof. The first, second, and third leads can have portions aligned with the aperture.
摘要:
A microelectronic assembly can include first and second microelectronic packages mounted to opposed surfaces of a circuit panel. Each package can include a substrate having first, second, and third apertures extending therethrough, first, second, and third microelectronic elements each having a surface facing the first surface of the substrate and a plurality of contacts aligned with at least one of the apertures, a plurality of terminals exposed at the second surface in a central region thereof, and leads connected between the contacts of each microelectronic element and the terminals. The apertures of each substrate can have first, second, and third axes extending in directions of their lengths. The first and second axes can be parallel to one another. The third axis can be transverse to the first and second axes. The terminals of each package can be configured to carry all of the address signals transferred to the respective package.
摘要:
A microelectronic assembly includes an interconnection element, element contacts, first and second metal layers, conductive elements, and first and second microelectronic devices. The first metal layer may extend beyond at least one of the edges of the first microelectronic device. The conductive elements may respectively extend beyond at least one of the edges of the first metal layer. The first metal layer may have a surface disposed at a substantially uniform spacing from at least substantial portions of the conductive elements, such that a desired impedance may be achieved for the conductive elements. The conductive elements may be spaced a smaller distance from the metal layer than the distance of the conductive elements from the front surface of the first microelectronic device. The second metal layer may be connectable to a source of reference potential.
摘要:
A microelectronic structure includes a first row of contacts (14) and a second row of contacts (24) offset from the first row, so that the first and second rows cooperatively define pairs of contacts. These pairs of contacts include first pairs (30a) and second pairs (30b) arranged in alternating sequence in the row direction. The first pairs are provided with low connectors (32a), whereas the second pairs are provided with high connectors (32b). The high connectors and low connectors have sections vertically offset from one another to reduce mutual impedance between adjacent connectors.
摘要:
A microelectronic assembly can include a substrate having first and second surfaces and an aperture extending therebetween, the substrate having terminals. The assembly can also include a first microelectronic element having a front surface facing the first surface of the substrate, a second microelectronic element having a front surface facing the first microelectronic element and projecting beyond an edge of the first microelectronic element, first and second leads electrically connecting contacts of the respective first and second microelectronic elements to the terminals, and third leads electrically interconnecting the contacts of the first and second microelectronic elements. The contacts of the first microelectronic element can be exposed at the front surface thereof adjacent the edge thereof. The contacts of the second microelectronic element can be disposed in a central region of the front surface thereof. The first, second, and third leads can have portions aligned with the aperture.
摘要:
A microelectronic assembly is disclosed that is capable of achieving a desired impedance for raised conductive elements. The microelectronic assembly may include an interconnection element, a surface conductive element, a microelectronic device, a plurality of raised conductive elements, and a bond element. The microelectronic device may overlie the dielectric element and at least one surface conductive element attached to the front surface. The plurality of raised conductive elements may connect the device contacts with the element contacts. The raised conductive elements may have substantial portions spaced a first height above and extending at least generally parallel to at least one surface conductive element, such that a desired impedance may be achieved for the raised conductive elements. A bond element may electrically connect at least one surface conductive element with at least one reference contact that may be connectable to a source of reference potential.
摘要:
A microelectronic package can include a substrate and a microelectronic element having a rear face facing a first surface of the substrate, a front face, and a column of element contacts extending in a first direction. The microelectronic element can include stacked electrically interconnected semiconductor chips. Edges of the microelectronic element can define an axial plane extending in the first direction and a third direction normal to the rear face. The package can include columns of terminals extending in the first direction at a second surface of the substrate. The terminals can include first terminals exposed in a central region of the second surface and configured to carry address information usable by circuitry within the package to determine an addressable memory location. The central region may have a width not more than 3.5 times a minimum pitch between adjacent terminal columns. The axial plane can intersect the central region.
摘要:
A microelectronic assembly can include a microelectronic package connected with a circuit panel. The package has a microelectronic element having a front face facing away from a substrate of the package, and electrically connected with the substrate through conductive structure extending above the front face. First terminals provided in first and second parallel grids or in first and second individual columns can be configured to carry address information usable to determine an addressable memory location from among all the available addressable memory locations of the memory storage array. The first terminals in the first grid can have signal assignments which are a mirror image of the signal assignments of the first terminals in the second grid.
摘要:
A system or microelectronic assembly can include one or more microelectronic packages each having a substrate and a microelectronic element having a face and one or more columns of contacts thereon which face and are joined to corresponding contacts on a surface of the substrate. An axial plane may intersect the face along a line in the first direction and centered relative to the columns of element contacts. Columns of package terminals can extend in the first direction. First terminals in a central region of the second surface can be configured to carry address information usable to determine an addressable memory location within the microelectronic element. The central region may have a width not more than three and one-half times a minimum pitch between the columns of package terminals. The axial plane can intersect the central region.
摘要:
A microelectronic assembly includes a dielectric element having at least one aperture and electrically conductive elements thereon including terminals exposed at the second surface of the dielectric element; a first microelectronic element having a rear surface and a front surface facing the dielectric element, the first microelectronic element having a plurality of contacts exposed at the front surface thereof; a second microelectronic element having a rear surface and a front surface facing the rear surface of the first microelectronic element, the second microelectronic element having a plurality of contacts exposed at the front surface and projecting beyond an edge of the first microelectronic element; and an electrically conductive plane attached to the dielectric element and at least partially positioned between the first and second apertures, the electrically conductive plane being electrically connected with one or more of the contacts of at least one of the first or second microelectronic elements.