Abstract:
A package is disclosed. In one example, the package includes a first main face for mounting a heat sink and an opposing second main face for being mounted on a mounting base. The package comprises a carrier, an electronic component mounted at the carrier, and an encapsulant encapsulating at least part of the electronic component and at least part of the carrier. Electrically insulating material covers electrically conductive material of the carrier at said first main face. The encapsulant comprises at least one step at the first main face.
Abstract:
A method of processing a plurality of packaged electronic chips being connected to one another in a common substrate is provided, wherein the method comprises etching the electronic chips, detecting information indicative of an at least partial removal of an indicator structure following an exposure of the indicator structure embedded within at least a part of the electronic chips and being exposed after the etching has removed chip material above the indicator structure, and adjusting the processing upon detecting the information indicative of the at least partial removal of the indicator structure.
Abstract:
A package is disclosed. In one example, the package includes a first main face for mounting a heat sink and an opposing second main face for being mounted on a mounting base. The package comprises a carrier, an electronic component mounted at the carrier, and an encapsulant encapsulating at least part of the electronic component and at least part of the carrier. Electrically insulating material covers electrically conductive material of the carrier at said first main face. The encapsulant comprises at least one step at the first main face.
Abstract:
A package is disclosed. In one example, the package includes a first main face for mounting a heat sink and an opposing second main face for being mounted on a mounting base. The package comprises a carrier, an electronic component mounted at the carrier, and an encapsulant encapsulating at least part of the electronic component and at least part of the carrier. Electrically insulating material covers electrically conductive material of the carrier at said first main face. The encapsulant comprises at least one step at the first main face.
Abstract:
A chip package structure is disclosed. In one example, the chip package may include a chip, an encapsulation material, and an exposed pad that is electrically conductively connected to the chip. A layer of a porous or dendrite-comprising adhesion promoter is on a surface of the exposed pad. A thermal interface material that is attached to the exposed pad by the layer.
Abstract:
A method of manufacturing a package which comprises encapsulating at least part of an electronic chip by an encapsulant, subsequently covering a part of the electronic chip with a chip attach medium, and attaching the encapsulated electronic chip on a chip carrier via the chip attach medium.
Abstract:
Described are techniques related to semiconductor devices that make use of encapsulant. In one implementation, a semiconductor device may be manufactured to include at least an encapsulant that includes at least glass particles.
Abstract:
An electronic component which comprises an electrically conductive carrier, an electronic chip on the carrier, an encapsulant encapsulating at least part of at least one of the carrier and the electronic chip, and a functional structure covering a surface portion of the encapsulant, wherein at least part of the covered surface portion of the encapsulant is spatially selectively roughened.
Abstract:
Method for manufacturing an electronic semiconductor package, in which method an electronic chip (100) is coupled to a carrier, the electronic chip is at least partially encapsulated by means of an encapsulation structure having a discontinuity, and the carrier is partially encapsulated, and at least one part of the discontinuity and a volume connected thereto adjoining an exposed surface section of the carrier are covered by an electrically insulating thermal interface structure, which electrically decouples at least one part of the carrier with respect to its surroundings.
Abstract:
A semiconductor arrangement is provided. The semiconductor arrangement may include an electrically conductive plate having a surface, a plurality of power semiconductor devices arranged on the surface of the electrically conductive plate, wherein a first controlled terminal of each power semiconductor device of the plurality of power semiconductor devices may be electrically coupled to the electrically conductive plate, a plurality of electrically conductive blocks, wherein each electrically conductive block may be electrically coupled with a respective second controlled terminal of each power semiconductor device of the plurality of power semiconductor devices; and encapsulation material encapsulating the plurality of power semiconductor devices, wherein at least one edge region of the surface of the electrically conductive plate may be free from the encapsulation material.