Abstract:
A semiconductor device and methods of forming the same are provided. The methods may include forming a hole in a preliminary semiconductor substrate, forming an insulating layer in the hole of the preliminary semiconductor substrate, forming a plating conductive layer on the insulating layer and the preliminary semiconductor substrate, forming a seed metal layer contacting the plating conductive layer at a lower portion of the hole and growing the seed metal layer to form a through-silicon via (TSV). The TSV may be formed through an electroplating process such that the seed metal layer grows from the lower portion of the hole to an upper portion of the hole.
Abstract:
A chip stack package includes a substrate, a plurality of chips, a plurality of adhesive layers and a plug. The substrate has a wiring pattern and a seed layer formed on the wiring pattern. Each of the chips has an electrode pad and a first through-hole that penetrates the electrode pad. The chips are stacked such that the first through-holes are aligned on the seed layer of the substrate. The adhesive layers are interposed between the substrate and one of the chips, as well as between the chips. Each of the adhesive layers has a second through-hole connected to the first through-hole. The plug fills up the first through-holes and the second through-holes and electrically connects the electrode pads to the wiring pattern of the substrate. A cross-sectional area of the plug in the second through-holes may be larger than that of the plug in the first through-holes.
Abstract:
A stacked semiconductor package may include: a substrate; semiconductor packages stacked on the substrate; an interconnection member formed on edges of the semiconductor packages; and a conductive reinforcement member formed on the interconnection member. Each of the semiconductor packages may include a conductive line. The interconnection member may electrically connect the conductive line of the semiconductor packages to the conductive line of at least one other semiconductor package. A method of manufacturing a stacked semiconductor package may include: forming semiconductor packages; stacking the semiconductor packages on a substrate; forming a mask pattern on the semiconductor packages and the substrate to expose the edges of the semiconductor packages; performing an electroless plating process on the edges of the semiconductor packages to form a seed layer; and performing an electroplating process on the seed layer to form an interconnection member for electrically connecting the conductive lines to each other.
Abstract:
A chip stack package includes a substrate, a plurality of chips, a plurality of adhesive layers and a plug. The substrate has a wiring pattern and a seed layer formed on the wiring pattern. Each of the chips has an electrode pad and a first through-hole that penetrates the electrode pad. The chips are stacked such that the first through-holes are aligned on the seed layer of the substrate. The adhesive layers are interposed between the substrate and one of the chips, as well as between the chips. Each of the adhesive layers has a second through-hole connected to the first through-hole. The plug fills up the first through-holes and the second through-holes and electrically connects the electrode pads to the wiring pattern of the substrate. A cross-sectional area of the plug in the second through-holes may be larger than that of the plug in the first through-holes.
Abstract:
An apparatus for electroplating a semiconductor device includes a plating bath accommodating a plating solution, and a paddle in the plating bath, the paddle including a plurality of holes configured to pass the plating solution through the paddle toward a substrate, and a plating solution flow reinforcement portion configured to selectively reinforce a flow of the plating solution to a predetermined area of the substrate, the predetermined area of the substrate being an area requiring a relatively increased supply of metal ions of the plating solution.
Abstract:
Provided are methods of fabricating semiconductor chips, semiconductor chips formed by the methods, and chip-stack packages having the semiconductor chips. One embodiment specifies a method that includes patterning a scribe line region of a semiconductor substrate to form a semiconductor strut spaced apart from edges of a chip region of the semiconductor substrate.
Abstract:
A semiconductor device can include a substrate that has a surface. A via structure can extend through the substrate toward the surface of the substrate, where the via structure includes an upper surface. A pad structure can be on the surface of the substrate, where the pad structure can include a lower surface having at least one protrusion that is configured to protrude toward the upper surface of the via structure.
Abstract:
A method of manufacturing a semiconductor device includes forming an integrated circuit region on a semiconductor wafer. A first metal layer pattern is formed over the integrated circuit region. A via hole is formed to extend through the first metal layer pattern and the integrated circuit region. A final metal layer pattern is formed over the first metal layer pattern and within the via hole. A plug is formed within the via hole. Thereafter, a passivation layer is formed to overlie the final metal layer pattern.
Abstract:
A method of manufacturing semiconductor device includes preparing a substrate having a first surface and a second surface opposite to the first surface. A first insulation layer is formed on the second surface. A sacrificial layer is formed on the first insulation layer. An opening is formed to penetrate through the substrate and extend from the first surface to a portion of the sacrificial layer. A second insulation layer is formed on an inner wall of the opening. A plug is formed to fill the opening. The sacrificial layer is removed to expose a lower portion of the plug through the second surface.
Abstract:
The inventive concept provides methods for inhibiting the formation of one or more oxides on metal bumps during the formation of solder joint structures and solder joint structures including one or more preservative films. In some embodiments, the solder joint structure includes a metal bump having a preservative film disposed on the surface thereof.