Abstract:
A semiconductor device includes a semiconductor substrate and a via electrode. The via electrode has a first portion on the substrate and extends towards the substrate and has a plurality of spikes that extends from the first portion into the substrate, each of the spikes being spaced apart form one another.
Abstract:
A semiconductor device includes a first device including a first substrate and a first external connection terminal for connecting outside the first device; a second device stacked on the first device, the second device including a second substrate and a second external connection terminal for connecting outside the second device; an adhesive pattern disposed between the first device and second device, the adhesive pattern disposed in locations other than locations where the first external connection terminal and second external connection terminal are disposed, and the adhesive pattern causing the first device and second device, when stacked, to be spaced apart by a predetermined distance; and a plated layer disposed between and electrically and physically connecting the first external connection terminal and the second external connection terminal.
Abstract:
A semiconductor device and a method of fabricating a semiconductor device. The semiconductor device includes an interlayer insulation layer pattern, a metal wire pattern exposed by a passage formed by a via hole formed in the interlayer insulation layer pattern to input and output an electrical signal, and a plated layer pattern directly contacting the metal wire pattern and filling the via hole. The method includes forming an interlayer insulation layer having a metal wire pattern to input and output an electrical signal formed therein, forming a via hole to define a passage that extends through the interlayer insulation layer until at least a part of the metal wire pattern is exposed, and forming a plated layer pattern to fill the via hole and to directly contact the metal wire pattern by using the metal wire pattern exposed through the via hole as a seed metal layer.
Abstract:
A substrate treating device may include a plating treatment portion configured to perform a plating process of a substrate, a wet treatment portion configured to perform a wet treating process of the substrate, the wet treatment portion being under the plating treatment portion, and a substrate support portion configured to support the substrate so that a plating surface of the substrate faces upward, the substrate support portion being further configured to move the substrate between the plating treatment portion and the wet treatment portion.
Abstract:
A semiconductor apparatus having a through electrode, a semiconductor package, and a method of manufacturing the semiconductor package are provided. The method of includes preparing a substrate including a buried via, the buried via having a first surface at a first end, and the buried via extending from a first substrate surface of the substrate into the substrate; planarizing a second substrate surface of the substrate opposite the first substrate surface to form a through via by exposing a second via surface at a second end of the buried via opposite the first end; forming a conductive capping layer on the exposed second via surface of the through via; and recessing the second substrate surface so that at least a first portion of the through via extends beyond the second substrate surface.
Abstract:
A semiconductor device and a method of fabricating a semiconductor device. The semiconductor device includes an interlayer insulation layer pattern, a metal wire pattern exposed by a passage formed by a via hole formed in the interlayer insulation layer pattern to input and output an electrical signal, and a plated layer pattern directly contacting the metal wire pattern and filling the via hole. The method includes forming an interlayer insulation layer having a metal wire pattern to input and output an electrical signal formed therein, forming a via hole to define a passage that extends through the interlayer insulation layer until at least a part of the metal wire pattern is exposed, and forming a plated layer pattern to fill the via hole and to directly contact the metal wire pattern by using the metal wire pattern exposed through the via hole as a seed metal layer.
Abstract:
Provided is a semiconductor device. The semiconductor device may include a substrate and a stacked insulation layer on a sidewall of an opening which penetrates the substrate. The stacked insulation layer can include at least one first insulation layer and at least one second insulation layer whose dielectric constant is different than that of the first insulation layer. One insulation layer may be a polymer and one insulation layer may be a silicon based insulation layer. The insulation layers may be uniform in thickness or may vary as a distance from the substrate changes.
Abstract:
A semiconductor device includes a semiconductor substrate and a via electrode. The via electrode has a first portion on the substrate and extends towards the substrate and has a plurality of spikes that extends from the first portion into the substrate, each of the spikes being spaced apart form one another.
Abstract:
An apparatus for electroplating a semiconductor device includes a plating bath accommodating a plating solution, and a paddle in the plating bath, the paddle including a plurality of holes configured to pass the plating solution through the paddle toward a substrate, and a plating solution flow reinforcement portion configured to selectively reinforce a flow of the plating solution to a predetermined area of the substrate, the predetermined area of the substrate being an area requiring a relatively increased supply of metal ions of the plating solution.
Abstract:
Provided is a semiconductor device. The semiconductor device may include a substrate and a stacked insulation layer on a sidewall of an opening which penetrates the substrate. The stacked insulation layer can include at least one first insulation layer and at least one second insulation layer whose dielectric constant is different than that of the first insulation layer. One insulation layer may be a polymer and one insulation layer may be a silicon based insulation layer. The insulation layers may be uniform in thickness or may vary as a distance from the substrate changes.