Abstract:
A power management module, provides an inductor including one or more electrical conductors disposed around a ferromagnetic ceramic element including one or more metal oxides having fluctuations in metal-oxide compositional uniformity less than or equal to 1.50 mol % throughout the ceramic element.
Abstract:
Thick-film capacitors are formed on ceramic interconnect substrates having high capacitance densities and other desirable electrical and physical properties. The capacitor dielectrics are fired at high temperatures.
Abstract:
The present invention relates to a method for producing an electrical subassembly comprising a circuit carrier and at least one passive component which is integrated into the circuit carrier and comprises an electrically functional material. For providing an improved method for manufacturing an electrical subassembly comprising a circuit carrier and at least one passive component integrated into the circuit carrier, the method ensuring a rapid and inexpensive manufacture on the one hand and permitting a high flexibility on the other hand in the selection of the electrically functional materials involved, the method comprising structuring the circuit carrier, at least one recess being created for the passive element; introducing the electrically functional material in a raw state into the recess of the circuit carrier; converting the electrically functional material from the raw state into a final state by supplying energy.
Abstract:
A new structure is provided to replace the existing common planar capacitor structure used in printed circuit boards. The conventional common planar capacitor structure utilizes a single dielectric layer and embedded capacitors with different capacitances are achieved by adjusting the sizes of the embedded capacitors' conductive terminals. Since general applications usually require capacitors whose capacitance range covers several orders of magnitude, these embedded capacitors have significant differences in terms of their conductive terminals' sizes. This will make the manufacturing process more complicated and difficult. The new structure combines inorganic material having a specific dielectric constant and polymer having another specific dielectric constant into a singulated non-overlapping coplanar capacitor structure that is easy to manufacture and provides better precision.
Abstract:
Innerlayer panels are provided with high density fiducials during manufacture. The fiducials can be identified using X-rays without etching away portions of the innerlayer panel to expose the fiducials.
Abstract:
The present invention provides a thin-film embedded capacitance having a substantial electrostatic capacity per unit area, and a method for manufacturing thereof. A thin film embedded capacitance comprising: a metallic thin-film for wiring made of a metallic material in a non-yield state; the first electrode formed on the film for wiring; a dielectric material layer formed on the first electrode and the film for wiring, at a temperature not lower than ordinary room temperature to lower than a yield temperature of the film for wiring, having a coefficient of thermal expansion lower than that the film for wiring; and the second electrode formed on the dielectric material layer, and a method for manufacturing thereof.
Abstract:
A capacitor device of the present invention includes a substrate, a float electrode formed on the substrate, a valve metal film formed on the float electrode, a dielectric film formed on the valve metal film by applying an anodic oxidation to a part of the valve metal film, and a pair of electrodes provided in areas overlapping with two different parts of the float electrode on the dielectric film respectively.
Abstract:
A system and method for the fabrication of high reliability capacitors (1011), inductors (1012), and multi-layer interconnects (1013) (including resistors (1014)) on various thin film hybrid substrate surfaces (0501) is disclosed. The disclosed method first employs a thin metal layer (0502) deposited and patterned on the substrate (0501). This thin patterned layer (0502) is used to provide both lower electrodes for capacitor structures (0603) and interconnects (0604) between upper electrode components. Next, a dielectric layer (0705) is deposited over the thin patterned layer (0502) and the dielectric layer (0705) is patterned to open contact holes (0806) to the thin patterned layer. The upper electrode layers (0907, 0908, 1009, 1010) are then deposited and patterned on top of the dielectric (0705).
Abstract:
A semiconductor package, provided with a multilayer interconnect structure, for mounting a semiconductor chip on its top surface, wherein a topmost stacked structure of the multilayer interconnect structure includes a capacitor structure, the capacitor structure having a dielectric layer comprised of a mixed electrodeposited layer of high dielectric constant inorganic filler and insulating resin and including chip connection pads for directly connecting top electrodes and bottom electrodes with electrodes of the semiconductor chip, whereby greater freedom in design of interconnect patterns can be secured, the degree of proximity of the capacitor and semiconductor chip can be greatly improved, and the package can be made smaller and lighter in weight, a method of production of the same, and a semiconductor device using this semiconductor package.