Abstract:
A semiconductor device has a semiconductor die mounted to a substrate. A leadframe has a base plate and integrated tie bars and conductive bodies. The tie bars include a down step with an angled surface and horizontal surface between the conductive bodies. The leadframe is mounted to the semiconductor die and substrate with the base plate disposed on a back surface of the semiconductor die and the conductive bodies disposed around the semiconductor die and electrically connected to the substrate. An encapsulant is deposited over the substrate and semiconductor die and into the down step of the tie bars. A conductive layer is formed over the conductive bodies to inhibit oxidation. The leadframe is singulated through the encapsulant in the down step and through the horizontal portion of the tie bars to electrically isolate the conductive bodies. A semiconductor package can be mounted to the substrate and semiconductor die.
Abstract:
A semiconductor device has a semiconductor die and first insulating layer formed over the semiconductor die. A patterned trench is formed in the first insulating layer. A conductive ink is deposited in the patterned trench by disposing a stencil over the first insulating layer with an opening aligned with the patterned trench and depositing the conductive ink through the opening in the stencil into the patterned trench.Alternatively, the conductive ink is deposited by dispensing the conductive ink through a nozzle into the patterned trench. The conductive ink is cured by ultraviolet light at room temperature. A second insulating layer is formed over the first insulating layer and conductive ink. An interconnect structure is formed over the conductive ink. An encapsulant can be deposited around the semiconductor die. The patterned trench is formed in the encapsulant and the conductive ink is deposited in the patterned trench in the encapsulant.
Abstract:
A method of manufacture of an integrated circuit packaging system includes: providing a terminal having a top with a depression; applying a dielectric material in the depression, the dielectric material having a gap formed therein and exposing a portion of the top therefrom; forming a trace within the gap and in direct contact with the top, the trace extending laterally over an upper surface of the dielectric material; and connecting an integrated circuit to the terminal through the trace.
Abstract:
A semiconductor device has a semiconductor die with a die bump pad and substrate with a trace line and integrated bump pad. Conductive bump material is deposited on the substrate bump pad or die bump pad. The semiconductor die is mounted over the substrate so that the bump material is disposed between the die bump pad and substrate bump pad. The bump material is reflowed without a solder mask around the die bump pad or substrate bump pad to form an interconnect. The bump material is self-confined within a footprint of the die bump pad or substrate bump pad. The bump material can be immersed in a flux solution prior to reflow to increase wettability. Alternatively, the interconnect includes a non-fusible base and fusible cap. The volume of bump material is selected so that a surface tension maintains self-confinement of the bump material within the bump pads during reflow.
Abstract:
A semiconductor device has a semiconductor die mounted to a carrier. A first encapsulant is deposited over the semiconductor die and carrier. A stiffening support member can be disposed over the carrier around the semiconductor die. A plurality of channels or recesses is formed in the first encapsulant. The recesses can be formed by removing a portion of the first encapsulant. Alternatively, the recesses are formed in a chase mold having a plurality of extended surfaces. A second encapsulant can be deposited into the recesses of the first encapsulant. The carrier is removed and an interconnect structure is formed over the semiconductor die and first encapsulant. The thickness of the first encapsulant provides sufficient stiffness to reduce warpage while the recesses provide stress relief during formation of the interconnect structure. A portion of the first encapsulant and recesses are removed to reduce thickness of the semiconductor device.
Abstract:
A semiconductor device has a semiconductor die mounted to a substrate. A recess is formed in a back surface of the semiconductor die to an edge of the semiconductor die with sidewalls on at least two sides of the semiconductor die. The sidewalls are formed by removing a portion of the back surface of the die, or by forming a barrier layer on at least two sides of the die. A channel can be formed in the back surface of the semiconductor die to contain the TIM. A TIM is formed in the recess. A heat spreader is mounted in the recess over the TIM with a down leg portion of the heat spreader thermally connected to the substrate. The sidewalls contain the TIM to maintain uniform coverage of the TIM between the heat spreader and back surface of the semiconductor die.
Abstract:
A warpage test system uses a calibration block to calibrate the warpage test system over a temperature profile. The calibration block includes a first metal block bonded to a second metal block. The first metal block includes a first metal and a second different metal. The first metal block includes a CTE different than a CTE of the second metal block. The calibration block is disposed in the warpage test system. A warpage of the calibration block is measured over a temperature profile ranging from 28° C. to 260° C. A deviation between the measured warpage of the calibration block and a known thermal expansion of the calibration block over the temperature profile is recorded. The warpage measurement in a semiconductor package is compensated by the deviation between the measured warpage of the calibration block and the known thermal expansion or warpage of the calibration block over the temperature profile.
Abstract:
A semiconductor device has a semiconductor die. The semiconductor die is disposed over a conductive substrate. An encapsulant is deposited over the semiconductor die. A first interconnect structure is formed over the encapsulant. An opening is formed through the substrate to isolate a portion of the substrate electrically connected to the first interconnect structure. A bump is formed over the first interconnect structure. Conductive vias are formed through the encapsulant and electrically connected to the portion of the substrate. A plurality of bumps is formed over the semiconductor die. A first conductive layer is formed over the encapsulant. A first insulating layer is formed over the first conductive layer. A second conductive layer is formed over the first insulating layer and first conductive layer. A second insulating layer is formed over the first insulating layer and second conductive layer. Protrusions extend above the substrate.
Abstract:
A semiconductor wafer has a plurality of first semiconductor die. A second semiconductor die is mounted to the first semiconductor die. The active surface of the first semiconductor die is oriented toward an active surface of the second semiconductor die. An encapsulant is deposited over the first and second semiconductor die. A portion of a back surface of the second semiconductor die opposite the active surface is removed. Conductive pillars are formed around the second semiconductor die. TSVs can be formed through the first semiconductor die. An interconnect structure is formed over the back surface of the second semiconductor die, encapsulant, and conductive pillars. The interconnect structure is electrically connected to the conductive pillars. A portion of a back surface of the first semiconductor die opposite the active surface is removed. A heat sink or shielding layer can be formed over the back surface of the first semiconductor die.
Abstract:
A semiconductor device comprises a first semiconductor package including a conductive layer. A substrate including an interconnect structure is disposed over the conductive layer. The interconnect structure of the substrate with the conductive layer of the first semiconductor package are self-aligned. A plurality of openings is formed in the substrate. An adhesive is disposed between the substrate and the first semiconductor package and in the openings of the substrate. A redistribution layer (RDL) is formed over the first semiconductor package opposite the substrate. A pitch of the substrate is different from a pitch of the RDL. The adhesive extends to the interconnect structure of the substrate. A second semiconductor package is disposed over the substrate and the first semiconductor package.