摘要:
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
摘要:
Provided are methods for making a device or device component by providing a multi layer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.
摘要:
A microfluidic system includes a flexible substrate having a skin-facing surface and a back-facing surface; a microfluidic network at least partially embedded in or supported by the flexible substrate; a sensor fluidically connected to the microfluidic network, wherein the microfluidic network is configured to transport a biofluid from a skin surface to the sensor; and a capping layer, having a capping layer skin-facing surface and a back-facing surface, wherein the back-facing surface of the capping layer is attached to the skin-facing surface of the substrate. The flexible substrate is at least partially formed of a thermoplastic elastomer or a polymer configured to provide a high barrier to vapor or liquid water transmission.
摘要:
The invention provides systems for handling biofluids including the transport, capture, collection, storage, sensing, and/or evaluation of biofluids released by tissue. Systems of some aspects provide a versatile platform for characterization of a broad range of physical and/or chemical biofluid attributes in real time and over clinically relevant timeframes. Systems of some aspects provide for collection and/or analysis of biofluids from conformal, watertight tissue interfaces over time intervals allowing for quantitative temporal and/or volumetric characterization of biofluid release, such as release rates and release volumes.
摘要:
Provided are implantable, injectable and/or surface mounted biomedical devices and related methods for interfacing with a target tissue. The devices have a substrate, one or more microfluidic channels embedded in or supported by the substrate and a fluid actuator in operational communication with one or more reservoirs and responsive to a wireless control signal. The components of the device are specially configured and packaged to be ultra-thin and mechanically compliant. In some embodiments, the devices are self-powered and fully implantable. The devices can be shaped to provide injection in a minimally invasive manner, thereby avoiding unnecessary tissue damage and providing a platform for long-term implantation for interfacing with biological tissue.
摘要:
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
摘要:
The invention provides systems and methods for wearable and tissue-mounted electronics for monitoring exposure of a subject or object to electromagnetic radiation, particularly electromagnetic radiation in the visible, ultraviolet and infrared portions of the electromagnetic spectrum. In some embodiments, the devices are purely passive devices where absorption of incident electromagnetic radiation by the device provides at least a portion of the power for the measurement of the radiant exposure or flux of the incident electromagnetic radiation. Devices of the invention may include near field communication components, for example, for enabling readout by an external device, such as a computer or mobile device.
摘要:
Provided are implantable and bioresorbable medical devices comprising a bioresorbable substrate and an electronic circuit supported by the bioresorbable substrate. The electronic circuit comprises a membrane of silicon having a thickness less than or equal to 5 μm and an array of dissolvable electrodes, wherein the dissolvable electrodes are formed from the membrane of silicon. The electronic circuit is configured to conformally contact a biological tissue and electrically interface with biological tissue during use. The silicon may be highly doped to provide the requisite characteristics for electrically interfacing with biological tissue, and may be further used to form other components of the electronic circuit, including back-plane transistors electrically connected to the electrode array.
摘要:
Provided are devices and methods capable of interfacing with biological tissues, such as organs like the heart, in real-time and using techniques which provide the ability to monitor and control complex physical, chemical, biochemical and thermal properties of the tissues as a function of time. The described devices and methods utilize micro scale sensors and actuators to spatially monitor and control a variety of physical, chemical and biological tissue parameters, such as temperature, pH, spatial position, force, pressure, electrophysiology and to spatially provide a variety of stimuli, such as heat, light, voltage and current.
摘要:
In a method of printing a transferable component, a stamp including an elastomeric post having three-dimensional relief features protruding from a surface thereof is pressed against a component on a donor substrate with a first pressure that is sufficient to mechanically deform the relief features and a region of the post between the relief features to contact the component over a first contact area. The stamp is retracted from the donor substrate such that the component is adhered to the stamp. The stamp including the component adhered thereto is pressed against a receiving substrate with a second pressure that is less than the first pressure to contact the component over a second contact area that is smaller than the first contact area. The stamp is then retracted from the receiving substrate to delaminate the component from the stamp and print the component onto the receiving substrate. Related apparatus and stamps are also discussed.