Abstract:
A circuit board mounted connector is equipped with an insulative housing, which holds a plurality of rows of contacts and is mounted on a circuit board. Each contact has a contact portion, for contacting another connector; and a leg portion, which is connected to the circuit board. Each leg portion has an extending portion that extends from a rear wall of the insulative housing; a flexible portion, which is formed continuously with the extending portions; and a linear portion that extends in a direction substantially perpendicular to the circuit board from the flexible portion and is connected to an aperture of the circuit board. Of the plurality of rows of contacts, at least the row closest to the circuit board has extending portions that extend away from the circuit board, up to the flexible portions. The linear portions of each of the leg portions are partially tin plated.
Abstract:
An interconnection apparatus and a method of forming an interconnection apparatus. Contact structures are attached to or formed on a first substrate. The first substrate is attached to a second substrate, which is larger than the first substrate. Multiple such first substrates may be attached to the second substrate in order to create an array of contact structures. Each contact structure may be elongate and resilient and may comprise a core that is over coated with a material that imparts desired structural properties to the contact structure.
Abstract:
An electronic device includes a printed circuit board having lands and an electronic element having a body and terminals. First and second lands provide a zigzag pattern. Each first land is coupled with the first terminal, and each second land is coupled with the second terminal. The second terminal includes a first parallel member, a first connection member, a second parallel member and a first mounting member. The first parallel member is completely embedded in the body, or another part of the first parallel member exposed from the body is shorter than the second parallel member. A second height between the second parallel member and the printed circuit board is smaller than a first height between the first parallel member and the printed circuit board.
Abstract:
An optoelectronic package is attached to a printed circuit board, in which optoelectronic package has a shaped lead configuration. The lead configuration enables the shaped leads to electrically connect with through-hole vias defined in a printed circuit board while minimizing space requirements and providing stress relief for the leads. In one embodiment, an optical subassembly is disclosed, comprising a header containing optoelectronic components, and a plurality of conductive leads that are in operable communication with the optoelectronic components. Each lead includes a straight portion extending from a surface of the header, an end portion oriented so as to be received by a through-hole via defined in a printed circuit board, and a shaped portion interposed between the straight and end portions and having at least one bend defined in a first plane. The optical subassembly further includes a clip assembly having a plurality of cavities that each receive a corresponding one of the leads.
Abstract:
A parallel wire is installed on a board. Wire parts of strip-off margins at both ends of the parallel wire are bent so as to form bent portions before the wire parts are inserted into the board. The wire parts inserted into the board are prevented from being removed from the board by the bent portions and soldered to the board, while being moved in a dip bath. The bent portions are respectively formed into substantially U-shapes so that the substantially U-shaped bent portions are oriented opposite each other in a case where the parallel wire is in a flat state before the wire parts are inserted into the board and the substantially U-shaped bent portions are oriented in the same direction after the wire parts are inserted into the board, whereby solder uniformly accumulates on the wire parts to fix the wire parts to the board when the wire parts inserted into the board are moved in the dip bath in said direction.
Abstract:
Products and assemblies are provided for socketably receiving elongate interconnection elements, such as spring contact elements, extending from electronic components, such as semiconductor devices. Socket substrates are provided with capture pads for receiving ends of elongate interconnection elements extending from electronic components. Various capture pad configurations are disclosed. Connections to external devices are provided via conductive traces adjacent the surface of the socket substrate. The socket substrate may be supported by a support substrate. In a particularly preferred embodiment the capture pads are formed directly on a primary substrate such as a printed circuit board.
Abstract:
In a vibrator support structure, a vibrator is supported on a substrate through support pins, substrate connection portions of the support pins and pin connection portions of the substrate are joined through conductive adhesive which is made of a resin including conductive filler and has a pencil hardness of about 4H or less, and the conductive adhesive has a thickness which can buffer vibrations and impacts propagated through the support pins.
Abstract:
In a probe card assembly, a series of probe elements can be arrayed on a silicon space transformer. The silicon space transformer can be fabricated with an array of primary contacts in a very tight pitch, comparable to the pitch of a semiconductor device. One preferred primary contact is a resilient spring contact. Conductive elements in the space transformer are routed to second contacts at a more relaxed pitch. In one preferred embodiment, the second contacts are suitable for directly attaching a ribbon cable, which in turn can be connected to provide selective connection to each primary contact. The silicon space transformer is mounted in a fixture that provides for resilient connection to a wafer or device to be tested. This fixture can be adjusted to planarize the primary contacts with the plane of a support probe card board.
Abstract:
An interconnection contact structure assembly including an electronic component having a surface and a conductive contact carried by the electronic component and accessible at the surface. The contact structure includes an internal flexible elongate member having first and second ends and with the first end forming a first intimate bond to the surface of said conductive contact terminal without the use of a separate bonding material. An electrically conductive shell is provided and is formed of at least one layer of a conductive material enveloping the elongate member and forming a second intimate bond with at least a portion of the conductive contact terminal immediately adjacent the first intimate bond.
Abstract:
A soldering structure between a tab of a bus bar and a printed substrate is disclosed to provide a soldering structure between a tab of a bus bar and a printed substrate that causes no crack. An electrical conductive material is formed on a printed substrate. A tab through-hole is provide to penetrate the electrical conductive material and printed substrate. A tab formed by bending a body of the bus bar enters the tab through-hole. A periphery of the tab and the electrical conductive material are interconnected by soldering. A stress-absorbing aperture or recess is provided in an insulation plate on which the body of the bus bar is mounted. The stress-absorbing aperture or recess can absorb an axial stress caused in the tab.