摘要:
The present invention is directed to methods to harvest, integrate and exploit nanomaterials, and particularly elongated nanowire materials. The invention provides methods for harvesting nanowires that include selectively etching a sacrificial layer placed on a nanowire growth substrate to remove nanowires. The invention also provides methods for integrating nanowires into electronic devices that include placing an outer surface of a cylinder in contact with a fluid suspension of nanowires and rolling the nanowire coated cylinder to deposit nanowires onto a surface. Methods are also provided to deposit nanowires using an ink-jet printer or an aperture to align nanowires. Additional aspects of the invention provide methods for preventing gate shorts in nanowire based transistors. Additional methods for harvesting and integrating nanowires are provided.
摘要:
Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices).
摘要:
Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.
摘要:
Nucleotides and nucleotide analogs are used in various sequencing by incorporation/sequencing by synthesis methods. Nucleotide analogs comprising 3′-blocking groups are used to provide reversible chain-termination for sequencing by synthesis. Typical blocking groups include phosphate groups and carbamate groups. Fluorescent nucleotides are used to perform sequencing by synthesis with detection by incorporation of the fluorescently labeled nucleotide, optionally followed by photobleaching and intercalating dyes are used to detect addition of a non-labeled nucleotide in sequencing by synthesis with detection by intercalation. Microfluidic devices, including particle arrays, are used in the sequencing methods.
摘要:
The invention provides improved systems, devices, and methods for analyzing a large number of sample compounds contained in standard multi-well microtiter plates or other array structures. The multi-well plates travel along a conveyor system to a test station having a microfluidic device. At the test station, each plate is removed from the conveyor and the wells of the multi-well plate are sequentially aligned with an input port of the microfluidic device. After at least a portion of each sample has been input into the microfluidic channel system, the plate is returned to the conveyor system. Pre and/or post testing stations may be disposed along the conveyor system, and the use of an X-Y-Z robotic arm and novel plate support bracket allows each of the samples in the wells to be input into the microfluidic network through a probe affixed to a microfluidic chip. A clamshell structure having a hinged lid can releasably support the chip while providing and/or accommodating the electrical, optical, structural, and other interface connections between the microfluidic device and the surrounding system.
摘要:
Ligand compositions for use in preparing discrete coated nanostructures are provided, as well as the coated nanostructures themselves and devices incorporating same. Methods for post-deposition shell formation on a nanostructure and for reversibly modifying nanostructures are also provided. The ligands and coated nanostructures of the present invention are particularly useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nanostructures.
摘要:
The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays. In particular, the devices and methods of the invention are useful in screening large numbers of different compounds for their effects on a variety of chemical, and preferably, biochemical systems.
摘要:
A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
摘要:
The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays. In particular, the devices and methods of the invention are useful in screening large numbers of different compounds for their effects on a variety of chemical, and preferably, biochemical systems.
摘要:
Microfluidic devices, systems, and methods measure viscosity, flow times, and/or pressures, other flow characteristics within the channels, and the measured flow characteristics can be used to generate a desired flow. Multi-reservoir pressure modulator and pressure controller systems, electrokinetic systems and/or other fluid transport mechanisms can generate the flow, controllably mix fluids, and the like.